Publications by authors named "Gary K McMaster"

Background: The possibility of extracting RNA and measuring RNA expression from paraffin sections can allow extensive investigations on stored paraffin samples obtained from diseased livers and could help with studies of the natural history of liver fibrosis and inflammation, and in particular, correlate basic mechanisms to clinical outcomes.

Results: To address this issue, a pilot study of multiplex gene expression using branched-chain DNA technology was conducted to directly measure mRNA expression in formalin-fixed paraffin-embedded needle biopsy samples of human liver. Twenty-five genes were selected for evaluation based on evidence obtained from human fibrotic liver, a rat BDL model and in vitro cultures of immortalized human hepatic stellate cells.

View Article and Find Full Text PDF

Objectives: To develop a novel assay that uses branched DNA technology to measure TMPRSS2-ERG fusion, as genetic rearrangement of TMPRSS2 regulatory sequences and coding sequences of the ERG gene has been detected in nearly half of prostate cancers, but quantitative assays to detect such TMPRSS2-ERG gene fusion have been limited to real-time polymerase chain reaction (PCR) techniques that rely on reverse transcriptase-based amplification.

Methods: Branched DNA probes were designed to detect TMPRSS2-ERG gene fusion in prostate cancer cell lines. Nonquantitative nested reverse transcription (RT)-PCR and fluorescence in situ hybridization (FISH) were used to ascertain TMPRSS2-ERG gene fusion status in prostate tissues.

View Article and Find Full Text PDF

RNA interference constitutes a powerful tool for biological studies, but has also become one of the most challenging therapeutic strategies. However, small interfering RNA (siRNA)-based strategies suffer from their poor delivery and biodistribution. Cell-penetrating peptides (CPPs) have been shown to improve the intracellular delivery of various biologically active molecules into living cells and have more recently been applied to siRNA delivery.

View Article and Find Full Text PDF

We evaluated the branched-chain DNA (bDNA) assay QuantiGene Reagent System to measure RNA in formalin-fixed, paraffin-embedded (FFPE) tissues. The QuantiGene Reagent System does not require RNA isolation, avoids enzymatic preamplification, and has a simple workflow. Five selected genes were measured by bDNA assay; quantitative polymerase chain reaction (qPCR) was used as a reference method.

View Article and Find Full Text PDF

Background: Accurate and precise quantification of mRNA in whole blood is made difficult by gene expression changes during blood processing, and by variations and biases introduced by sample preparations. We sought to develop a quantitative whole-blood mRNA assay that eliminates blood purification, RNA isolation, reverse transcription, and target amplification while providing high-quality data in an easy assay format.

Methods: We performed single- and multiplex gene expression analysis with multiple hybridization probes to capture mRNA directly from blood lysate and used branched DNA to amplify the signal.

View Article and Find Full Text PDF

Formalin-fixed, paraffin-embedded (FFPE) tissues represent an important source of archival materials for gene expression profiling. We report here the development of a modified branch DNA assay that allows direct quantification of messenger RNA (mRNA) transcripts in homogenates from FFPE tissue sections without the need for RNA isolation and reverse transcription into cDNA. Formalin fixation essentially has no effect on the branch DNA assay, and RNA degradation only marginally reduces the signal by 2- to 3-fold.

View Article and Find Full Text PDF

We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of cooperative hybridization, which ensures an exceptionally high degree of assay specificity. Using in vitro transcribed RNA as reference standards, we demonstrated that the assay is highly specific, with cross-reactivity less than 0.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) is widely recognized as a powerful tool for targeted gene silencing. However, siRNA gene silencing occurs during transfection, limiting its use is in kinetic studies, deciphering toxic and off-target effects and phenotypic assays requiring temporal, and/or spatial regulation. We developed a novel controllable siRNA (csiRNA) that is activated by light.

View Article and Find Full Text PDF