The oxidation of iodide by ozone occurs at the sea-surface and within sea spray aerosol, influencing the overall ozone budget in the marine boundary layer and leading to the emission of reactive halogen gases. A detailed account of the surface mechanism has proven elusive, however, due to the difficulty in quantifying multiphase kinetics. To obtain a clearer understanding of this reaction mechanism at the air-water interface, we report pH-dependent oxidation kinetics of I in single levitated microdroplets as a function of [O] using a quadrupole electrodynamic trap and an open port sampling interface for mass spectrometry.
View Article and Find Full Text PDFSeveral studies have reported ionization methods to classify the chemical composition of levitated particles held in an electrodynamic balance using mass spectrometry (MS). These methods include electrospray-based paper spray (PS) ionization, plasma discharge ionization, and direct analysis in real-time (DART) ionization, with each showing advantages and disadvantages. Our recent work demonstrated that PS ionization could yield accurate data for the chemical evolution of mixed component particles undergoing evaporation.
View Article and Find Full Text PDFThe open port interface (OPI) coupled to an atmospheric pressure ion source is used to capture, dilute, focus, and transport nanoliter volume sample droplets for high-speed mass spectrometric analysis. For typical applications, the system has been optimized to achieve 1 Hz nanoliter volume sample transfer rates while simultaneously diluting the sample >1000-fold to minimize sample matrix-induced ionization suppression. Geometric, flow, and dispensing alterations to the system presented here demonstrate that sample transfer rates for the OPI of at least 15 Hz are possible.
View Article and Find Full Text PDFAcoustic ejection mass spectrometry is a recently developed concept in which low nanoliter-volume sample droplets are acoustically dispensed from microtiter plate wells into a continuous fluid transfer open-port interface for subsequent ionization at atmospheric pressure. This manuscript focuses on the acoustic droplet dispensing component of a prototype system, in particular the well-to-well sampling speed, droplet volume calibration, precision, reproducibility, and various modes of operation this device enables. A new method to measure the volume of individually dispensed droplets is presented to both aid method validation and potentially assist in the tuning of acoustic dispense parameters for samples having a wide range of viscosities and surface tensions.
View Article and Find Full Text PDFRationale: Laser microdissection-liquid vortex capture/electrospray ionization mass spectrometry (LMD-LVC/ESI-MS) has potential for on-line classification of tissue but an investigation into what analytical conditions provide best spectral differentiation has not been conducted. The effects of solvent, ionization polarity, and spectral acquisition parameters on differentiation of mouse brain tissue regions are described.
Methods: Individual 40 × 40 μm microdissections from cortex, white, grey, granular, and nucleus regions of mouse brain tissue were analyzed using different capture/ESI solvents, in positive and negative ion mode ESI, using time-of-flight (TOF)-MS and sequential window acquisitions of all theoretical spectra (SWATH)-MS (a permutation of tandem-MS), and combinations thereof.
Background: and are prominent candidate biocatalysts that, together, can enable the direct biotic conversion of lignocellulosic biomass to ethanol. The imbalance and suboptimal turnover rates of redox cofactors are currently hindering engineering efforts to achieve higher bioproductivity in both organisms. Measuring relevant intracellular cofactor concentrations will help understand redox state of these cofactors and help identify a strategy to overcome these limitations; however, metabolomic determinations of these labile metabolites have historically proved challenging.
View Article and Find Full Text PDFThe aim of this work was to demonstrate and to evaluate the analytical performance of a combined falling drop/open port sampling interface (OPSI) system as a simple noncontact, no-carryover, automated system for flow injection analysis with mass spectrometry. The falling sample drops were introduced into the OPSI using a widely available autosampler platform utilizing low cost disposable pipet tips and conventional disposable microtiter well plates. The volume of the drops that fell onto the OPSI was in the 7-15 μL range with an injected sample volume of several hundred nanoliters.
View Article and Find Full Text PDFAim: The aim of this work was to demonstrate and evaluate the analytical performance of coupling the immediate drop on demand technology to a mass spectrometer via the recently introduced open port sampling interface and ESI. Methodology & results: A maximum sample analysis throughput of 5 s per sample was demonstrated. Signal reproducibility was 10% or better as demonstrated by the quantitative analysis of propranolol and its stable isotope-labeled internal standard propranolol-d7.
View Article and Find Full Text PDFRationale: As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This paper describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.
Methods: Test patterns of varied line width (0.
The key to advancing materials is to understand and control their structure and chemistry. However, thorough chemical characterization is challenging since existing techniques characterize only a few properties of the specimen, thereby necessitating multiple measurement platforms to acquire the necessary information. The multimodal combination of atomic force microscopy (AFM) and mass spectrometry (MS) transcends existing analytical capabilities for nanometer scale spatially resolved correlation of the chemical and physical properties of a sample surface.
View Article and Find Full Text PDFThe use of atomic force microscopy controlled nanothermal analysis probes for reproducible spatially resolved thermally assisted sampling of micrometer-sized areas (ca. 11 × 17 μm wide × 2.4 μm deep) from relatively low number-average molecular weight (M < 3000) polydisperse thin films of poly(2-vinylpyridine) (P2VP) is presented.
View Article and Find Full Text PDFRationale: An "Open Access"-like mass spectrometric platform to fully utilize the simplicity of the manual open port sampling interface for rapid characterization of unprocessed samples by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The in-house developed integrated software with a simple, small and relatively low-cost mass spectrometry system introduced here fills this void.
Methods: Software was developed to operate the mass spectrometer, to collect and process mass spectrometric data files, to build a database and to classify samples using such a database.
Spatial resolved quantitation of chemical species in thin tissue sections by mass spectrometric methods has been constrained by the need for matrix-matched standards or other arduous calibration protocols and procedures to mitigate matrix effects (e.g., spatially varying ionization suppression).
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2016
Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe the chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces.
View Article and Find Full Text PDFIn this paper, the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry. The infrared chemical imaging component of the system utilized photothermal expansion of the sample at the tip of the atomic force microscopy probe recorded at infrared wave numbers specific to the different surface constituents. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for thermolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
March 2016
Rationale: Laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples.
Methods: The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis of single cells and tissue.
Rapid Commun Mass Spectrom
July 2016
Rationale: Currently, the absolute quantitation aspects of droplet-based surface sampling for tissue analysis using a fully automated autosampler/high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS) system have not been fully evaluated. Knowledge of extraction efficiency and its reproducibility is required to judge the potential of the method for absolute quantitation of analytes from tissue sections.
Methods: Adjacent tissue sections of propranolol-dosed mouse brain (10-μm-thick), kidney (10-μm-thick) and liver (8-, 10-, 16- and 24-μm-thick) were obtained.
Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites were studied. Major organs (brain, lung, liver, kidney and muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed.
View Article and Find Full Text PDFA commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
October 2015
Rationale: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void.
Methods: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the ionization source of the mass spectrometer via the commercial APCI emitter probe.
Ambient ionization mass spectrometry techniques have recently become prevalent in natural product research due to their ability to examine secondary metabolites in situ. These techniques retain invaluable spatial and temporal details that are lost through traditional extraction processes. However, most ambient ionization techniques do not collect mutually supportive data, such as chromatographic retention times and/or UV/vis spectra, and this can limit the ability to identify certain metabolites, such as differentiating isomers.
View Article and Find Full Text PDFRecently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed noncontact liquid-vortex capture probe has been used to efficiently collect material ablated by a 355 nm UV laser in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appears to be classic electrospray ionization spectra; however, the 'softness' of this sampling/ionization process versus simple electrospray ionization has not been definitely determined.
View Article and Find Full Text PDFDescribed here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections, using a fully automated droplet-based liquid-microjunction surface-sampling-HPLC-ESI-MS-MS system for spatially resolved sampling, HPLC separation, and mass spectrometric detection. Excellent correlation was found between the protein distribution data obtained with this method and data obtained with matrix-assisted laser desorption/ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland.
View Article and Find Full Text PDFThe advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating the co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas-phase species produced with subsequent mass analysis. The basic instrumental setup and operation are discussed, and the multimodal imaging capability and utility are demonstrated using a phase-separated polystyrene/poly(2-vinylpyridine) polymer blend thin film.
View Article and Find Full Text PDFPrevious studies defined easy and difficult to hydrolyze fractions of hemicellulose that may result from bonds among cellulose, hemicellulose, and lignin. To understand how such bonds affect hydrolysis, Populus trichocarpa × Populus deltoides, holocellulose isolated from P. trichocarpa × P.
View Article and Find Full Text PDF