Publications by authors named "Gary H Blumenthal"

The cortex has a disputed role in monitoring postural equilibrium and intervening in cases of major postural disturbances. Here, we investigate the patterns of neural activity in the cortex that underlie neural dynamics during unexpected perturbations. In both the primary sensory (S1) and motor (M1) cortices of the rat, unique neuronal classes differentially covary their responses to distinguish different characteristics of applied postural perturbations; however, there is substantial information gain in M1, demonstrating a role for higher-order computations in motor control.

View Article and Find Full Text PDF

Postural control is critical for locomotion, allowing for gait changes, obstacle avoidance and navigation of rough terrain. A major problem after spinal cord injury (SCI) is regaining the control of balance to prevent falls and further injury. While the circuits for locomotor pattern generation reside in the spinal cord, postural control consists of multiple, complex networks that interact at the spinal, brainstem and cortical levels.

View Article and Find Full Text PDF

Sensorimotor integration in the trunk system is poorly understood despite its importance for functional recovery after neurological injury. To address this, a series of mapping studies were performed in the rat. First, the receptive fields (RFs) of cells recorded from thoracic dorsal root ganglia were identified.

View Article and Find Full Text PDF

Background: The rat mid-thoracic contusion model has been used to study at-level tactile allodynia, a common type of pain that develops after spinal cord injury (SCI). An important advantage of this model is that not all animals develop hypersensitivity. Therefore, it can be used to examine mechanisms that are strictly related to the development of pain-like behaviour separately from mechanisms related to the injury itself.

View Article and Find Full Text PDF

Aim: The activation of the TNFR2 receptor is beneficial in several pathologies of the central nervous system, and this study examines whether it can ameliorate the recovery process following spinal cord injury.

Methods: EHD2-sc-mTNF , an agonist specific for TNFR2, was used to treat neurons exposed to high levels of glutamate in vitro. In vivo, it was infused directly to the spinal cord via osmotic pumps immediately after a contusion to the cord at the T9 level.

View Article and Find Full Text PDF