[IrCl(COE)] (1) reacts with pyridine (py) and H to form crystallographically characterized IrCl(H)(COE)(py) (2). 2 undergoes py loss to form 16-electron IrCl(H)(COE)(py) (3), with equivalent hydride ligands. When this reaction is studied with parahydrogen, 1 efficiently achieves hyperpolarization of free py (and nicotinamide, nicotine, 5-aminopyrimidine, and 3,5-lutudine) via signal amplification by reversible exchange (SABRE) and hence reflects a simple and readily available precatayst for this process.
View Article and Find Full Text PDFNuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are two extremely important techniques with applications ranging from molecular structure determination to human imaging. However, in many cases the applicability of NMR and MRI are limited by inherently poor sensitivity and insufficient nuclear spin lifetime. Here we demonstrate a cost-efficient and fast technique that tackles both issues simultaneously.
View Article and Find Full Text PDFThe creation of magnetic states that have long lifetimes has been the subject of intense investigation, in part because of their potential to survive the time taken to travel from the point of injection in a patient to the point where a clinically diagnostic MRI trace is collected. We show here that it is possible to harness the signal amplification by reversible exchange (SABRE) process to create such states in a hyperpolarised form that improves their detectability in seconds without the need for any chemical change by reference to the model substrate 2-aminothiazole. We achieve this by transferring Zeeman derived polarisation that is 1500 times larger than that normally available at 400 MHz with greater than 90% efficiency into the new state, which in this case has a 27 second lifetime.
View Article and Find Full Text PDFIn this work, we illustrate a method to continuously hyperpolarize a biomolecule, nicotinamide, in water using parahydrogen and signal amplification by reversible exchange (SABRE). Building on the preparation procedure described recently by Truong et al. [ J.
View Article and Find Full Text PDFUnlabelled: An unresolved goal in face perception is to identify brain areas involved in face processing and simultaneously understand the timing of their involvement. Currently, high spatial resolution imaging techniques identify the fusiform gyrus as subserving processing of invariant face features relating to identity. High temporal resolution imaging techniques localize an early latency evoked component-the N/M170-as having a major generator in the fusiform region; however, this evoked component is not believed to be associated with the processing of identity.
View Article and Find Full Text PDFA novel neutral iridium carbene complex Ir(κC,O-L)(COD) () [where COD = cyclooctadiene and L = 3-(2-methylene-4-nitrophenolate)-1-(2,4,6-trimethylphenyl) imidazolylidene] with a pendant alkoxide ligand has been prepared and characterized. It contains a strong Ir-O bond and X-ray analysis reveals a distorted square planar structure. NMR spectroscopy reveals dynamic solution state behavior commensurate with rapid seven-membered ring flipping.
View Article and Find Full Text PDFThe catalyst which is used in the signal amplification by reversible exchange (SABRE) process facilitates substrate hyperpolarisation while acting to speed up the rate of relaxation. Consequently, the lifetime over which the hyperpolarised contrast agent is visible is drastically reduced. We show that the addition of a chelating ligand, such as bipyridine, rapidly deactivates the SABRE catalyst thereby lengthening the agent's relaxation times and improving the potential of SABRE for diagnostic MRI.
View Article and Find Full Text PDFTraditional (31)P NMR or MRI measurements suffer from low sensitivity relative to (1)H detection and consequently require longer scan times. We show here that hyperpolarization of (31)P nuclei through reversible interactions with parahydrogen can deliver substantial signal enhancements in a range of regioisomeric phosphonate esters containing a heteroaromatic motif which were synthesized in order to identify the optimum molecular scaffold for polarization transfer. A 3588-fold (31)P signal enhancement (2.
View Article and Find Full Text PDFWe report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing (1)H and (13)C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality.
View Article and Find Full Text PDFThe short lived pincer complex [(C5H3N(CH2P((t)Bu)2)2)Ir(H)2(py)]BF4 is shown to be active for signal amplification by reversible exchange. This catalyst formulation enables the efficient transfer of polarization from parahydrogen to be placed into just a single molecule of the hyperpolarisation target, pyridine. When the catalysts (1)H nuclei are replaced by (2)H, increased levels of substrate hyperpolarization result and when the reverse situation is examined the catalyst itself is clearly visible through hyperpolarised signals.
View Article and Find Full Text PDFHyperpolarization methods are used in NMR to overcome its inherent sensitivity problem. Herein, the biologically relevant target nicotinamide is polarized by the hyperpolarization technique signal amplification by reversible exchange. We illustrate how the polarization transfer field, and the concentrations of parahydrogen, the polarization-transfer-catalyst and substrate can be used to maximize signal amplification by reversible exchange effectiveness by reference to the first-order spin system of this target.
View Article and Find Full Text PDFSignal amplification by reversible exchange (SABRE) of a substrate and parahydrogen at a catalytic center promises to overcome the inherent insensitivity of magnetic resonance. In order to apply the new approach to biomedical applications, there is a need to develop experimental equipment, in situ quantification methods, and a biocompatible solvent. We present results detailing a low-field SABRE polarizer which provides well-controlled experimental conditions, defined spins manipulations, and which allows in situ detection of thermally polarized and hyperpolarized samples.
View Article and Find Full Text PDFThe spatiotemporal profile of activation of the prefrontal cortex in verbal and non-verbal recognition memory was examined using magnetoencephalography (MEG). Sixteen neurologically healthy right-handed participants were scanned whilst carrying out a modified version of the Doors and People Test of recognition memory. A pattern of significant prefrontal activity was found for non-verbal and verbal encoding and recognition.
View Article and Find Full Text PDFNuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.
View Article and Find Full Text PDFSpeech and emotion perception are dynamic processes in which it may be optimal to integrate synchronous signals emitted from different sources. Studies of audio-visual (AV) perception of neutrally expressed speech demonstrate supra-additive (i.e.
View Article and Find Full Text PDFMagnetoencephalography (MEG) enables non-invasive recording of neuronal activity, with reconstruction methods providing estimates of underlying brain source locations and oscillatory dynamics from externally recorded neuromagnetic fields. The aim of our study was to use MEG to determine the effect of manual acupuncture on neuronal oscillatory dynamics. A major problem in MEG investigations of manual acupuncture is the absence of onset times for each needle manipulation.
View Article and Find Full Text PDFObjective: To improve the accuracy and reliability of the localisation of epileptogenic activity using spatially filtered MEG data.
Methods: A synthetic epileptic source was embedded in healthy brain activity in different orientations in order to estimate how reliably this signal containing high levels of kurtosis can be localised. An existing approach (SAM(g2)) was compared to a new implementation of the methodology.
Magnetoencephalography (MEG) beamformer analyses use spatial filters to estimate neuronal activity underlying the magnetic fields measured by the MEG sensors. MEG "virtual electrodes" are the outputs of beamformer spatial filters. The present study aimed to test the hypothesis that MEG virtual electrodes can replicate the findings from intracortical "depth" electrode studies relevant to the processing of the temporal envelopes of sounds [e.
View Article and Find Full Text PDFThe characterization of materials by the inherently insensitive method of NMR spectroscopy plays a vital role in chemistry. Increasingly, hyperpolarization is being used to address the sensitivity limitation. Here, by reference to quinoline, we illustrate that the SABRE hyperpolarization technique, which uses para-hydrogen as the source of polarization, enables the rapid completion of a range of NMR measurements.
View Article and Find Full Text PDFIn this study we investigate whether stimulus variability affects the auditory steady-state response (ASSR). We present cosinusoidal AM pulses as stimuli where we are able to manipulate waveform shape independently of the fixed repetition rate of 4 Hz. We either present sounds in which the waveform shape, the pulse-width, is fixed throughout the presentation or where it varies pseudo-randomly.
View Article and Find Full Text PDFAn increasing number of neuroimaging studies are concerned with the identification of interactions or statistical dependencies between brain areas. Dependencies between the activities of different brain regions can be quantified with functional connectivity measures such as the cross-correlation coefficient. An important factor limiting the accuracy of such measures is the amount of empirical data available.
View Article and Find Full Text PDFClassical views of speech perception argue that the static and dynamic characteristics of spectral energy peaks (formants) are the acoustic features that underpin phoneme recognition. Here we use representations where the amplitude modulations of sub-band filtered speech are described, precisely, in terms of co-sinusoidal pulses. These pulses are parameterised in terms of their amplitude, duration and position in time across a large number of spectral channels.
View Article and Find Full Text PDFThe estimates that humans make of statistical dependencies in the environment and therefore their representation of uncertainty crucially depend on the integration of data over time. As such, the extent to which past events are used to represent uncertainty has been postulated to vary over the cortex. For example, primary visual cortex responds to rapid perturbations in the environment, while frontal cortices involved in executive control encode the longer term contexts within which these perturbations occur.
View Article and Find Full Text PDFWhile the characterization of materials by NMR is hugely important in the physical and biological sciences, it also plays a vital role in medical imaging. This success is all the more impressive because of the inherently low sensitivity of the method. We establish here that [Ir(H)(2)(IMes)(py)(3)]Cl undergoes both pyridine (py) loss as well as the reductive elimination of H(2).
View Article and Find Full Text PDF