The majority of human breast cancers are dependent on hormone-stimulated estrogen receptor alpha (ER) and are sensitive to its inhibition. Treatment resistance arises in most advanced cancers due to genetic alterations that promote ligand independent activation of ER itself or ER target genes. Whereas re-targeting of the ER ligand binding domain (LBD) with newer ER antagonists can work in some cases, these drugs are largely ineffective in many genetic backgrounds including ER fusions that lose the LBD or in cancers that hyperactivate ER targets.
View Article and Find Full Text PDFOncoprotein expression is controlled at the level of mRNA translation and is regulated by the eukaryotic translation initiation factor 4F (eIF4F) complex. eIF4A, a component of eIF4F, catalyzes the unwinding of secondary structure in the 5'-untranslated region (5'-UTR) of mRNA to facilitate ribosome scanning and translation initiation. Zotatifin (eFT226) is a selective eIF4A inhibitor that increases the affinity between eIF4A and specific polypurine sequence motifs and has been reported to inhibit translation of driver oncogenes in models of lymphoma.
View Article and Find Full Text PDFThe major cap-binding protein eukaryotic translation initiation factor 4E (eIF4E), an ancient protein required for translation of all eukaryotic genomes, is a surprising yet potent oncogenic driver. The genetic interactions that maintain the oncogenic activity of this key translation factor remain unknown. In this study, we carry out a genome-wide CRISPRi screen wherein we identify more than 600 genetic interactions that sustain eIF4E oncogenic activity.
View Article and Find Full Text PDFUsing genetically engineered mouse models, this work demonstrates that protein synthesis is essential for efficient urothelial cancer formation and growth but dispensable for bladder homeostasis. Through a candidate gene analysis for translation regulators implicated in this dependency, we discovered that phosphorylation of the translation initiation factor eIF4E at serine 209 is increased in both murine and human bladder cancer, and this phosphorylation corresponds with an increase in de novo protein synthesis. Employing an eIF4E serine 209 to alanine knock-in mutant mouse model, we show that this single posttranslational modification is critical for bladder cancer initiation and progression, despite having no impact on normal bladder tissue maintenance.
View Article and Find Full Text PDFThe PI3K/AKT/mTOR pathway is often activated in lymphoma through alterations in PI3K, PTEN, and B-cell receptor signaling, leading to dysregulation of eIF4A (through its regulators, eIF4B, eIF4G, and PDCD4) and the eIF4F complex. Activation of eIF4F has a direct role in tumorigenesis due to increased synthesis of oncogenes that are dependent on enhanced eIF4A RNA helicase activity for translation. eFT226, which inhibits translation of specific mRNAs by promoting eIF4A1 binding to 5'-untranslated regions (UTR) containing polypurine and/or G-quadruplex recognition motifs, shows potent antiproliferative activity and significant efficacy against a panel of diffuse large B-cell lymphoma (DLBCL), and Burkitt lymphoma models with ≤1 mg/kg/week intravenous administration.
View Article and Find Full Text PDFIn the originally published version of this Letter, the authors Arthur F. Kluge, Michael A. Patane and Ce Wang were inadvertently omitted from the author list.
View Article and Find Full Text PDFDysregulated translation of mRNA plays a major role in tumorigenesis. Mitogen-activated protein kinase interacting kinases (MNK)1/2 are key regulators of mRNA translation integrating signals from oncogenic and immune signaling pathways through phosphorylation of eIF4E and other mRNA binding proteins. Modulation of these key effector proteins regulates mRNA, which controls tumor/stromal cell signaling.
View Article and Find Full Text PDFThe dynamic and reversible acetylation of proteins, catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is a major epigenetic regulatory mechanism of gene transcription and is associated with multiple diseases. Histone deacetylase inhibitors are currently approved to treat certain cancers, but progress on the development of drug-like histone actyltransferase inhibitors has lagged behind. The histone acetyltransferase paralogues p300 and CREB-binding protein (CBP) are key transcriptional co-activators that are essential for a multitude of cellular processes, and have also been implicated in human pathological conditions (including cancer).
View Article and Find Full Text PDFHerein we disclose SAR studies that led to a series of isoindoline ureas which we recently reported were first-in-class, non-substrate nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. Modification of the isoindoline and/or the terminal functionality of screening hit 5 provided inhibitors such as 52 and 58 with nanomolar antiproliferative activity and preclinical pharmacokinetics properties which enabled potent antitumor activity when dosed orally in mouse xenograft models. X-ray crystal structures of two inhibitors bound in the NAMPT active-site are discussed.
View Article and Find Full Text PDFCancer cells are highly reliant on NAD-dependent processes, including glucose metabolism, calcium signaling, DNA repair, and regulation of gene expression. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD salvage from nicotinamide, has been investigated as a target for anticancer therapy. Known NAMPT inhibitors with potent cell activity are composed of a nitrogen-containing aromatic group, which is phosphoribosylated by the enzyme.
View Article and Find Full Text PDFHerein we disclose SAR studies of a series of dimethylamino pyrrolidines which we recently reported as novel inhibitors of the PRC2 complex through disruption of EED/H3K27me3 binding. Modification of the indole and benzyl moieties of screening hit 1 provided analogs with substantially improved binding and cellular activities. This work culminated in the identification of compound 2, our nanomolar proof-of-concept (PoC) inhibitor which provided on-target tumor growth inhibition in a mouse xenograft model.
View Article and Find Full Text PDFPolycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function.
View Article and Find Full Text PDFProtein lysine methyltransferases (PKMTs) regulate diverse physiological processes including transcription and the maintenance of genomic integrity. Genetic studies suggest that the PKMTs SUV420H1 and SUV420H2 facilitate proficient nonhomologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation (me2 and me3, respectively) of lysine 20 on histone 4 (H4K20). Here we report the identification of A-196, a potent and selective inhibitor of SUV420H1 and SUV420H2.
View Article and Find Full Text PDFHistone methyltransferases are epigenetic regulators that modify key lysine and arginine residues on histones and are believed to play an important role in cancer development and maintenance. These epigenetic modifications are potentially reversible and as a result this class of enzymes has drawn great interest as potential therapeutic targets of small molecule inhibitors. Previous studies have suggested that the histone lysine methyltransferase G9a (EHMT2) is required to perpetuate malignant phenotypes through multiple mechanisms in a variety of cancer types.
View Article and Find Full Text PDFA lack of useful small molecule tools has precluded thorough interrogation of the biological function of SMYD2, a lysine methyltransferase with known tumor-suppressor substrates. Systematic exploration of the structure-activity relationships of a previously known benzoxazinone compound led to the synthesis of A-893, a potent and selective SMYD2 inhibitor (IC50: 2.8 nM).
View Article and Find Full Text PDFG9a is a histone lysine methyltransferase responsible for the methylation of histone H3 lysine 9. The discovery of A-366 arose from a unique diversity screening hit, which was optimized by incorporation of a propyl-pyrrolidine subunit to occupy the enzyme lysine channel. A-366 is a potent inhibitor of G9a (IC50: 3.
View Article and Find Full Text PDFMetabolic rewiring is an established hallmark of cancer, but the details of this rewiring at a systems level are not well characterized. Here we acquire this insight in a melanoma cell line panel by tracking metabolic flux using isotopically labeled nutrients. Metabolic profiling and flux balance analysis were used to compare normal melanocytes to melanoma cell lines in both normoxic and hypoxic conditions.
View Article and Find Full Text PDFIn melanoma, the activation of pro-survival signaling pathways, such as the AKT and NF-κB pathways, is critical for tumor growth. We have recently reported that the AKT inhibitor BI-69A11 causes efficient inhibition of melanoma growth. Here, we show that in addition to its AKT inhibitory activity, BI-69A11 also targets the NF-κB pathway.
View Article and Find Full Text PDFMutations in the MID1 gene are causally linked to X-linked Opitz BBB/G syndrome (OS), a congenital disorder that primarily affects the formation of diverse ventral midline structures. The MID1 protein has been shown to function as an E3 ligase targeting the catalytic subunit of protein phosphatase 2A (PP2A-C) for ubiquitin-mediated degradation. However, the molecular pathways downstream of the MID1/PP2A axis that are dysregulated in OS and that translate dysfunctional MID1 and elevated levels of PP2A-C into the OS phenotype are poorly understood.
View Article and Find Full Text PDFThe phosphoinositide 3-kinase (PI3K) pathway regulates mammalian cell growth, survival, and motility and plays a major pathogenetic role in human prostate cancer (PCa). However, the oncogenic contributions downstream of the PI3K pathway made by mammalian target of rapamycin complex 1 (mTORC1)-mediated cell growth signal transduction in PCa have yet to be elucidated in detail. Here, we engineered constitutive mTORC1 activation in prostate epithelium by a conditional genetic deletion of tuberous sclerosis complex 1 (Tsc1), a potent negative regulator of mTORC1 signaling.
View Article and Find Full Text PDFSmall GTPase Ras homologue enriched in brain (RHEB) binds and activates the key metabolic regulator mTORC1, which has an important role in cancer cells, but the role of RHEB in cancer pathogenesis has not been shown. By performing a meta-analysis of published cancer cytogenetic and transcriptome databases, we defined a gain of chromosome 7q36.1-q36.
View Article and Find Full Text PDFThe DNA replication machinery plays additional roles in S phase checkpoint control, although the identities of the replication proteins involved in checkpoint activation remain elusive. Here, we report that depletion of the prereplicative complex (pre-RC) protein Cdc6 causes human nontransformed diploid cells to arrest nonlethally in G1-G1/S and S phase, whereas multiple cancer cell lines undergo G1-G1/S arrest and cell death. These divergent phenotypes are dependent on the activation, or lack thereof, of an ataxia telangiectasia and Rad3-related (ATR)-dependent S phase checkpoint that inhibits replication fork progression.
View Article and Find Full Text PDFThe cellular response to hypoxia involves several signalling pathways that mediate adaptation and survival. REDD1 (regulated in development and DNA damage responses 1), a hypoxia-inducible factor-1 target gene, has a crucial role in inhibiting mammalian target of rapamycin complex 1 (mTORC1) signalling during hypoxic stress. However, little is known about the signalling pathways and post-translational modifications that regulate REDD1 function.
View Article and Find Full Text PDF