Cytokine release from airway epithelial cells is a key immunological process that coordinates an immune response in the lungs. We propose that the Rho GTPase, Cdc42, regulates both transcription and trafficking of cytokines, ultimately affecting the essential process of cytokine release and subsequent inflammation in the lungs. Here, we examined the pro-inflammatory transcriptional profile that occurs in bronchial epithelial cells (BEAS-2B) in response to TNF-α using RNA-Seq and differential gene expression analysis.
View Article and Find Full Text PDFMast cells are hematopoietic-derived immune cells that possess numerous cytoplasmic granules containing immune mediators such as cytokines and histamine. Antigen stimulation triggers mast cell granule exocytosis, releasing granule contents in a process known as degranulation. We have shown that Rho GTPase signaling is an essential component of granule exocytosis, however, the proteins that regulate Rho GTPases during this process are not well defined.
View Article and Find Full Text PDFWhen antigen-stimulated, mast cells release preformed inflammatory mediators stored in cytoplasmic granules. This occurs via a robust exocytosis mechanism termed degranulation. Our previous studies revealed that RhoA and Rac1 are activated during mast cell antigen stimulation and are required for mediator release.
View Article and Find Full Text PDFFront Immunol
January 2023
Airway epithelial cells can respond to incoming pathogens, allergens and stimulants through the secretion of cytokines and chemokines. These pro-inflammatory mediators activate inflammatory signaling cascades that allow a robust immune response to be mounted. However, uncontrolled production and release of cytokines and chemokines can result in chronic inflammation and appears to be an underlying mechanism for the pathogenesis of pulmonary disorders such as asthma and COPD.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a progressive and inflammatory demyelinating disease of the CNS. Peroxisomes perform critical functions that contribute to CNS homeostasis. We investigated peroxisome injury and mitigating effects of peroxisome-restorative therapy on inflammatory demyelination in models of MS.
View Article and Find Full Text PDFMast cells are tissue-resident immune cells that have numerous cytoplasmic granules which contain preformed pro-inflammatory mediators. Upon antigen stimulation, sensitized mast cells undergo profound changes to their morphology and rapidly release granule mediators by regulated exocytosis, also known as degranulation. We have previously shown that Rho GTPases regulate exocytosis, which suggests that cytoskeleton remodeling is involved in granule transport.
View Article and Find Full Text PDFAngiogenesis is required in embryonic development and tissue repair in the adult. Vascular endothelial growth factor (VEGF) initiates angiogenesis, and VEGF or its receptor is targeted therapeutically to block pathological angiogenesis. Additional pro-angiogenic cues, such as CXCL12 acting via the CXCR4 receptor, co-operate with VEGF/VEGFR2 to cue vascular patterning.
View Article and Find Full Text PDFPeptide based therapeutics are desirable owing to their high biological specificity. However, a number of these fail in clinical testing due to an adverse inflammatory response. Mast cells play a key role in directing the host response to drugs and related products.
View Article and Find Full Text PDFPeroxisome biogenesis disorders (PBDs) are a group of metabolic developmental diseases caused by mutations in one or more genes encoding peroxisomal proteins. Zellweger syndrome spectrum (PBD-ZSS) results from metabolic dysfunction caused by damaged or non-functional peroxisomes and manifests as a multi-organ syndrome with significant morbidity and mortality for which there is no current drug therapy. Mild PBD-ZSS patients can exhibit a more progressive disease course and could benefit from the identification of drugs to improve the quality of life and extend the lifespan of affected individuals.
View Article and Find Full Text PDFTrypanosomatid parasites, including and , are infectious zoonotic agents for a number of severe diseases such as African sleeping sickness and American trypanosomiasis (Chagas disease) that affect millions of people, mostly in the emergent world. The glycosome is a specialized member of the peroxisome family of organelles found in trypanosomatids. These organelles compartmentalize essential enzymes of the glycolytic pathway, making them a prime target for drugs that can kill these organisms by interfering with either their biochemical functions or their formation.
View Article and Find Full Text PDFAngiogenesis inhibitors, such as the receptor tyrosine kinase (RTK) inhibitor sunitinib, target vascular endothelial growth factor (VEGF) signaling in cancers. However, only a fraction of patients respond, and most ultimately develop resistance to current angiogenesis inhibitor therapies. Activity of alternative pro-angiogenic growth factors, acting via RTK or G-protein coupled receptors (GPCR), may mediate VEGF inhibitor resistance.
View Article and Find Full Text PDFRho proteins are signalling molecules that control cellular dynamics, movement and morphological changes. They are activated by Rho guanine-nucleotide exchange factors (Rho GEFs) that transduce upstream signals into Rho-mediated activation of downstream processes. Fgd5 is a Rho GEF involved in angiogenesis and its target Rho protein for this process has been linked to Cdc42 activation.
View Article and Find Full Text PDFFYVE domains are highly conserved protein modules that typically bind phosphatidylinositol 3-phosphate (PI3P) on the surface of early endosomes. Along with pleckstrin homology (PH) and phox homology (PX) domains, FYVE domains are the principal readers of the phosphoinositide (PI) code that mediate specific recognition of eukaryotic organelles. Of all the human FYVE domain containing proteins, those within the faciogenital dysplasia (Fgd) subfamily are particularly divergent and couple with GTPases to exert unique cellular functions.
View Article and Find Full Text PDFMast cells are tissue-resident immune cells that produce potent proinflammatory mediators, which are stored in cytoplasmic granules. Stimulation triggers degranulation, a process that mobilizes granules to dock and fuse to the plasma membrane, releasing mediators. Mast cell degranulation has an important role in immunity but can also intensify inflammation and contribute to allergic disorders.
View Article and Find Full Text PDFRho GTPases are molecular switches that modulate a variety of cellular processes, most notably those involving actin dynamics. We have previously shown that yeast vacuolar membrane fusion requires re-organization of actin filaments mediated by two Rho GTPases, Rho1p and Cdc42p. Cdc42p initiates actin polymerization to facilitate membrane tethering; Rho1p has a role in the late stages of vacuolar fusion, but its mode of action is unknown.
View Article and Find Full Text PDFNeutrophils are part of a family of granulocytes that, together with eosinophils and basophils, play an essential role in innate immunity. Neutrophils are the most abundant circulating leukocytes and are vital for rapid immune responses, being recruited to sites of injury or infection within minutes, where they can act as specialized phagocytic cells. However, another prominent function of neutrophils is the release of pro-inflammatory compounds, including cytokines, chemokines, and digestive enzymes, which are stored in intracellular compartments and released through regulated exocytosis.
View Article and Find Full Text PDFThe release of preformed mediators from immune cells is through a process described as exocytosis. In mast cells, exocytosis is regulated by several coordinated intracellular signaling pathways. Here, we investigated the role of the hematopoietic-specific Rho GTPase, Rac2, and the ubiquitously expressed Rac1, in controlling mast cell exocytosis.
View Article and Find Full Text PDFRho proteins act as molecular switches to control multiple cellular processes. The switch mechanism involves cycling between active and inactive states based on GTP loading and hydrolysis. Assays that quantitatively analyze the GTP loading of Rho proteins have become important molecular tools to decipher upstream signals and mechanisms that regulate activation and de-activation.
View Article and Find Full Text PDFBackground: Neutrophils are abundant leukocytes that play a primary role in defence against pathogens. Neutrophils enter sites of infection where they eliminate pathogens via phagocytosis and the release of antimicrobial mediators via degranulation. Rho GTPases, particularly Rac2, play a key role in neutrophil degranulation.
View Article and Find Full Text PDFRhoGDIs (Rho GDP-dissociation inhibitors) are the natural inhibitors of Rho GTPases. They interfere with Rho protein function by either blocking upstream activation or association with downstream signalling molecules. RhoGDIs can also extract membrane-bound Rho GTPases to form soluble cytosolic complexes.
View Article and Find Full Text PDFThe antifungal antibiotic natamycin belongs to the family of polyene antibiotics. Its antifungal activity arises via a specific interaction with ergosterol in the plasma membrane (te Welscher et al., J.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2010
Small monomeric GTPases act as molecular switches, regulating many biological functions via activation of membrane localized signaling cascades. Activation of their switch function is controlled by GTP binding and hydrolysis. Two Rho GTPases, Cdc42p and Rho1p, are localized to the yeast vacuole where they regulate membrane fusion.
View Article and Find Full Text PDFCdc42p is a Rho GTPase that initiates signaling cascades at spatially defined intracellular sites for many cellular functions. We have previously shown that Cdc42p is localized to the yeast vacuole where it initiates actin polymerization during membrane fusion. Here we examine the activation cycle of Cdc42p during vacuole membrane fusion.
View Article and Find Full Text PDFIn Saccharomyces cerevisiae, peroxisomal inheritance from mother cell to bud is conducted by the class V myosin motor, Myo2p. However, homologues of S. cerevisiae Myo2p peroxisomal receptor, Inp2p, are not readily identifiable outside the Saccharomycetaceae family.
View Article and Find Full Text PDF