Ecosystems are frequently considered to be controlled by predation (top-down). Experiments examined this in four bird/spider/grasshopper/prairie habitats over 34 years, employing in each habitat three 100 m bird exclosures and controls (121 habitat/year cases) where plant, grasshopper, and spider abundances were measured. Top-down control (plants decrease and grasshoppers increase with bird exclusion) was observed in only 13.
View Article and Find Full Text PDFWild herbivore responses to anthropogenic climate change are often projected to be habitat and geographic range shifts as warmer conditions reduce the quantity and nutritional quality of forage plants, which makes species presence/absence a focus. Since 1978, herbivore abundances at the National Bison Range, MT, USA, were measured for grasshoppers (catch-effort), microtine rodents (runway density), and ungulates (drives and round-ups), along with climate and vegetation quantity (biomass) and quality (nitrogen content and chemical solubility related to digestibility). Counter to expectation with warming and drying, forage biomass increased as grass biomass increased more than dicot biomass decreased, and forage quality (solubility) increased.
View Article and Find Full Text PDFOver the past 109 years, a Montana intermountain bunchgrass prairie annually became warmer (0.7°C) and drier (27%). The temperature and precipitation trends continued since 1978, as we studied nitrogen availability, annual aboveground primary production (ANPP), plant phenology and species composition.
View Article and Find Full Text PDFUnderstanding drivers of ecosystem primary production is a foundational question in ecology that grows in importance with anthropogenic stresses (e.g., climate change).
View Article and Find Full Text PDFConsumer effects on rainforest primary production are often considered negligible because herbivores and macrodetritivores usually consume a small fraction of annual plant and litter production, even though consumers are known to have effects on plant production and composition in nontropical systems. Disturbances, such as treefall gaps, however, often increase resources to understory food webs, thereby increasing herbivory and feeding rates of detritivores. This increase in consumption could lead to more prominent ecosystem-level effects of consumers after disturbances, such as storms that cause light gaps.
View Article and Find Full Text PDFA fishery for brine shrimp (Artemia franciscana) cysts to supply the aquaculture industry considerably expanded in the late 1980s in the Great Salt Lake, Utah, USA. With this expansion, concerns emerged in the 1990s about the fishery's sustainability, especially its impact on the abundant western North American waterbirds that use the lake and feed on brine shrimp. We track the development of management strategies using adaptive management by the Utah Division of Wildlife Resources (UDWR), which focused on the biology of the system and development of biology-based harvesting models.
View Article and Find Full Text PDFOver the past century at the National Bison Range, temperature has increased by 0.6 °C, and annual precipitation has decreased by 26%, despite increases in May-June precipitation over the past 35 years. Limited experimental work to date has explored plant responses produced by the interaction of changes in both temperature and precipitation, and of the existing studies, none have focused on the endangered bunchgrass ecosystem.
View Article and Find Full Text PDFConsumers can alter decomposition rates through both feces and selective feeding in many ecosystems, but these combined effects have seldom been examined in tropical ecosystems. Members of the detrital food web (litter-feeders or microbivores) should presumably have greater effects on decomposition than herbivores, members of the green food web. Using litterbag experiments within a field enclosure experiment, we determined the relative effects of common litter snails (Megalomastoma croceum) and herbivorous walking sticks (Lamponius portoricensis) on litter composition, decomposition rates, and microbes in a Puerto Rican rainforest, and whether consumer effects were altered by canopy cover presence.
View Article and Find Full Text PDFSelective harvesting can cause evolutionary responses in populations via shifts in phenotypic characteristics, especially those affecting life history. Brine shrimp (Artemia franciscana) cysts in Great Salt Lake (GSL), Utah, USA are commercially harvested with techniques that select against floating cysts. This selective pressure could cause evolutionary changes over time.
View Article and Find Full Text PDFMounting scientific evidence indicates that pathogens can regulate insect populations. However, limited dispersal and sensitivity to abiotic conditions often restricts pathogen regulation of host populations. While it is well established that arthropod biological vectors increase pathogen incidence in host populations, few studies have examined whether arthropod mechanical vectors (an organism that transmits pathogens but is not essential to the life cycle of the pathogen) influence host-pathogen dynamics.
View Article and Find Full Text PDFIncreasingly, ecologists emphasize that prey frequently change behaviour in the presence of predators and these behavioural changes can reduce prey survival and reproduction as much or more than predation itself. However, the effects of behavioural changes on survival and reproduction may vary with prey density due to intraspecific competition. In field experiments, we varied grasshopper density and threat of avian predation and measured grasshopper behaviour, survival and reproduction.
View Article and Find Full Text PDFAn important challenge facing ecologists is to understand how climate change may affect species performance and species interactions. However, predicting how changes in abiotic variables associated with climate change may affect species performance also depends on the biotic context, which can mediate species responses to climatic change. We conducted a 3-yr field experiment to determine how the herbivorous grasshopper Camnula pellucida (Scudder) responds to manipulations of temperature and population density.
View Article and Find Full Text PDFThe population dynamics of two grasshoppers (Melanoplus femurrubrum and M. sanguinipes) were studied using experimental microcosms over 8 years at a Palouse prairie site in Montana. Grasshopper density, survival and reproduction in the experimental populations responded in a density-dependent fashion to natural and experimental changes in food availability for all grasshopper developmental stages, both within and between all years.
View Article and Find Full Text PDFLinear programming models of diet selection (LP) have been criticized as being too sensitive to variations in parameter values that have not been or may not be able to be measured with a high degree of precision (small standard error). Therefore, LP's predictions have been questioned, even though the predicted diet choices agree very well with observations in 400 published tests. The philosophical and statistical aspects of this criticism of LP are reviewed in light of the ability to test any nontrivial ecological theory.
View Article and Find Full Text PDFWe investigated the effects of thorns and spines on the feeding of 5 herbivore species in arid Australia. The herbivores were the rabbit (Oryctolagus cuniculus), euro kangaroo (Macropus robustus), red kangaroo (Macropus rufus), sheep (Ovis aries), and cattle (Bos taurus). Five woody plants without spines or thorns and 6 woody plants with thorns were included in the study.
View Article and Find Full Text PDFSeasonal energy intake was estimated for ten populations of Columbian ground squirrels (Spermophilus columbianus) in northwestern Montana. We calculated daily energy intake for an average ground squirrel in each population using measurements of feeding time, consumption rates of different vegetation types (monocots vs. dicots), and the proportion of monocots and dicots in the diet.
View Article and Find Full Text PDFA set of concepts was presented which could be used to model an animal's activity cycle and habitat choice as an optimization process. The model was applied to moose (Alces alces) summer activity and its predictions were consistent with observed feeding times and habitat selections. The optimization model had a goal of maximizing daily feeding time at the least possible energetic cost.
View Article and Find Full Text PDF