Publications by authors named "Gary D Bren"

CD4 T cells from HIV-1 infected patients die at excessive rates compared to those from uninfected patients, causing immunodeficiency. We previously identified a dominant negative ligand that antagonizes the TRAIL-dependent pathway of cell death, which we called TRAILshort. Because the TRAIL pathway has been implicated in CD4 T cell death occurring during HIV-1 infection, we used short hairpin RNA knockdown, CRISPR deletion, or Abs specific for TRAILshort to determine the effect of inhibiting TRAILshort on the outcome of experimental acute HIV infection in vitro.

View Article and Find Full Text PDF

Objective: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) dependent apoptosis has been implicated in CD4 T-cell death and immunologic control of HIV-1 infection. We have described a splice variant called TRAILshort, which is a dominant negative ligand that antagonizes TRAIL-induced cell death in the context of HIV-1 infection. HIV-1 elite controllers naturally control viral replication for largely unknown reasons.

View Article and Find Full Text PDF

HIV protease is known to cause cell death, which is dependent upon cleavage of procaspase 8. HIV protease cleavage of procaspase 8 generates Casp8p41, which directly binds Bak with nanomolar affinity, causing Bak activation and consequent cell death. Casp8p41 can also bind Bcl2 with nanomolar affinity, in which case cell death is averted.

View Article and Find Full Text PDF

TNF-related apoptosis-inducing ligand (TRAIL) was initially described to induce apoptosis of tumor cells and/or virally infected cells, although sparing normal cells, and has been implicated in the pathogenesis of HIV disease. We previously identified TRAILshort, a TRAIL splice variant, in HIV-infected patients and characterized it as being a dominant negative ligand to subvert TRAIL-mediated killing. Herein, using single-cell genomics we demonstrate that TRAILshort is produced by HIV-infected cells, as well as by uninfected bystander cells, and that the dominant stimulus which induces TRAILshort production are type I IFNs and TLR7, TLR8, and TLR9 agonists.

View Article and Find Full Text PDF

HIV persists because a reservoir of latently infected CD4 T cells do not express viral proteins and are indistinguishable from uninfected cells. One approach to HIV cure suggests that reactivating HIV will activate cytotoxic pathways; yet when tested in vivo, reactivating cells do not die sufficiently to reduce cell-associated HIV DNA levels. We recently showed that following reactivation from latency, HIV infected cells generate the HIV specific cytotoxic protein Casp8p41 which is produced by HIV protease cleaving procaspase 8.

View Article and Find Full Text PDF

Unlabelled: Understanding how some HIV-infected cells resist the cytotoxicity of HIV replication is crucial to enabling HIV cure efforts. HIV killing of CD4 T cells that replicate HIV can involve HIV protease-mediated cleavage of procaspase 8 to generate a fragment (Casp8p41) that directly binds and activates the mitochondrial proapoptotic protein BAK. Here, we demonstrate that Casp8p41 also binds with nanomolar affinity to the antiapoptotic protein Bcl-2, which sequesters Casp8p41 and prevents apoptosis.

View Article and Find Full Text PDF

Previous studies have shown that human immunodeficiency virus (HIV) protease cleaves procaspase 8 to a fragment, termed Casp8p41, that lacks caspase activity but nonetheless contributes to T cell apoptosis. Herein, we show that Casp8p41 contains a domain that interacts with the BH3-binding groove of pro-apoptotic Bak to cause Bak oligomerization, Bak-mediated membrane permeabilization, and cell death. Levels of active Bak are higher in HIV-infected T cells that express Casp8p41.

View Article and Find Full Text PDF

Background: HIV eradication strategies are now being evaluated in vitro and in vivo. A cornerstone of such approaches is maximal suppression of viral replication with combination antiretroviral therapy (ART). Since many antiretroviral agents have off target effects, and different classes target different components of the viral life cycle, we questioned whether different classes of ART might differentially affect the survival and persistence of productively HIV-infected CD4 T cells.

View Article and Find Full Text PDF

After a primary immune response, T cell memory occurs when a subset of Ag-specific T cells resists peripheral selection by acquiring resistance to TCR-induced death. Recent data have implicated Bcl-2 interacting mediator of death (Bim) as an essential mediator of the contraction phase of T cell immunity. In this article, we describe that stromal-derived factor-1α (SDF-1α) ligation of CXCR4 on activated T cells promotes two parallel processes that favor survival, phospho-inactivation of Foxo3A, as well as Bim extralong isoform (Bim(EL)) degradation, both in an Akt- and Erk-dependent manner.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how HIV and HCV contribute to liver cell (hepatocyte) damage by impacting the TRAIL receptor system.
  • HIV increases the expression of TRAIL-R2 and makes liver cells more sensitive to TRAIL-induced cell death, while HCV infection also raises TRAIL levels.
  • Co-infection studies show that liver cells primed by HIV gp120 die selectively when exposed to HCV, highlighting a potential mechanism for accelerated liver injury in individuals with both infections.
View Article and Find Full Text PDF

Patients with HIV infection have decreased numbers of osteoblasts, decreased bone mineral density and increased risk of fracture compared to uninfected patients; however, the molecular mechanisms behind these associations remain unclear. We questioned whether Gp120, a component of the envelope protein of HIV capable of inducing apoptosis in many cell types, is able to induce cell death in bone-forming osteoblasts. We show that treatment of immortalized osteoblast-like cells and primary human osteoblasts with exogenous Gp120 in vitro at physiologic concentrations does not result in apoptosis.

View Article and Find Full Text PDF

Virus-host interactions are characterized by the selection of adaptive mechanisms by which to evade pathogenic and defense mechanisms, respectively. In primary T cells infected with HIV, HIV infection up-regulates TNF-related apoptosis inducing ligand (TRAIL) and death-inducing TRAIL receptors, but blockade of TRAIL:TRAIL receptor interaction does not alter HIV-induced cell death. Instead, HIV infection results in a novel splice variant that we call TRAIL-short (TRAIL-s), which antagonizes TRAIL-R2.

View Article and Find Full Text PDF

Casp8p41, a novel protein generated when HIV-1 protease cleaves caspase 8, independently causes NF-κB activation, proinflammatory cytokine production, and cell death. Here we investigate the mechanism by which Casp8p41 induces cell death. Immunogold staining and electron microscopy demonstrate that Casp8p41 localizes to mitochondria of activated primary CD4 T cells, suggesting mitochondrial involvement.

View Article and Find Full Text PDF

In medicine, understanding the pathophysiologic basis of exceptional circumstances has led to an enhanced understanding of biology. We have studied the circumstance of HIV-infected patients in whom antiretroviral therapy results in immunologic benefit, despite virologic failure. In such patients, two protease mutations, I54V and V82A, occur more frequently.

View Article and Find Full Text PDF

Objective: HIV gp120 is a pleiotropic protein present in the plasma and tissues of HIV-infected patients, which affects a variety of homeostatic functions. In this report, we examine the mechanism of how gp120 blocks CD4 T cells from migrating towards SDF-1α.

Methods: In vitro treatment of primary CD4 T cells with CXCR4 tropic gp120, SDF, and measurement of chemotaxis and cell signaling.

View Article and Find Full Text PDF

Casp8p41 is a protein fragment generated by cleavage of procaspase 8 by human immunodeficiency virus (HIV) protease. We measured Casp8p41 content in memory CD4 T cells and analyzed the association of Casp8p41 content with CD4 T cell count, cross-sectionally and longitudinally. Casp8p41 content was inversely correlated with CD4 T cell count, and change in Casp8p41 content was associated with absolute CD4 T cell count with change over time.

View Article and Find Full Text PDF

Objective: HIV infection of CD4 T cells can lead to HIV protease-mediated cleavage of procaspase 8 generating a novel, HIV-specific peptide called Casp8p41. Casp8p41 has at least two biologic functions: induction of cell death via mitochondrial depolarization and release of cytochrome C, as well as activation of nuclear factor kappa B (NFkappaB). We have previously shown that Casp8p41-induced NFkappaB activation enhances HIV LTR transcription and consequently increases HIV replication.

View Article and Find Full Text PDF

HIV-infected patients exhibit quantitative and qualitative defects in CD4 T cells, including having increased numbers of CD4+CD45R0+/CD45RA+ T cells, although it remains unclear how these cells arise. Here we demonstrate that gp120 treatment of activated but not resting primary human CD4 T cells decreases number of cells with single positive CD45R0+/CD45RA- effector memory phenotype while proportionally increasing the subset of cells with double positive CD45R0+/CD45RA+ mixed phenotype. We found that double positive CD45R0+/CD45RA+CD4 T cells preferentially undergo apoptosis while single positive CD45R0+/CD45RA- and CD45R0-/CD45RA+ do not.

View Article and Find Full Text PDF

Background: HIV envelope glycoprotein gp120 causes cellular activation resulting in anergy, apoptosis, proinflammatory cytokine production, and through an unknown mechanism, enhanced HIV replication.

Methodology/principal Findings: We describe that the signals which promote apoptosis are also responsible for the enhanced HIV replication. Specifically, we demonstrate that the caspase 8 cleavage fragment Caspase8p43, activates p50/p65 Nuclear Factor kappaB (NF-kappaB), in a manner which is inhibited by dominant negative IkappaBalpha.

View Article and Find Full Text PDF

There is no clinical treatment that reduces acinar injury during pancreatitis. Human immunodeficiency virus (HIV) protease inhibitors (PI), including nelfinavir (NFV) and ritonavir (RTV), may reduce the rate of pancreatitis in HIV-infected patients. Since permeability transition pore (PTPC)-mediated mitochondrial dysfunction occurs during pancreatitis, and we have shown that PI prevents PTPC opening, we studied its effects in a model of pancreatitis.

View Article and Find Full Text PDF

Background: HIV infected patients have an increased susceptibility to liver disease due to Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), alcoholic, and non-alcoholic steatohepatitis. Clinically, this results in limited options for antiretroviral therapy and accelerated rates of liver disease, causing liver disease to be the second leading cause of death for HIV infected patients. The mechanisms causing this propensity for liver dysfunction during HIV remains unknown.

View Article and Find Full Text PDF

Numerous host and viral factors are capable of causing death of HIV infected cells, uninfected bystander cells, or both. We assessed the relevance of HIV protease in infected cell killing by mutating its obligate substrate for death, procaspase 8. VSV pseudotyped HIV infection of cells expressing WT caspase 8 resulted in apoptotic cell death and generation of the HIV protease specific cleavage product of procaspase 8, casp8p41.

View Article and Find Full Text PDF

Human Immunodeficiency Virus (HIV) protease initiates apoptosis of HIV-infected cells by proteolytic cleavage of procaspase 8, creating a novel peptide termed casp8p41. Expression of casp8p41 alone is sufficient to initiate caspase-dependent cell death associated with mitochondrial depolarization. Since casp8p41 does not contain the catalytic cysteine at position 360, the mechanism by which casp8p41 initiates apoptosis is unclear.

View Article and Find Full Text PDF

Acute HIV-1 infection of CD4 T cells often results in apoptotic death of infected cells, yet it is unclear what evolutionary advantage this offers to HIV-1. Given the independent observations that acute T cell HIV-1 infection results in (1) NF-kappaB activation, (2) caspase 8 dependent apoptosis, and that (3) caspase 8 directly activates NF-kappaB, we questioned whether these three events might be interrelated. We first show that HIV-1 infected T cell apoptosis, NF-kappaB activation, and caspase 8 cleavage by HIV-1 protease are coincident.

View Article and Find Full Text PDF