The field of Alzheimer's disease (AD) research critically lacks an all-inclusive etiology theory that would integrate existing hypotheses and explain the heterogeneity of disease trajectory and pathologies observed in each individual patient. Here, we propose a novel comprehensive theory that we named: the multipathology convergence to chronic neuronal stress. Our new theory reconsiders long-standing dogmas advanced by previous incomplete theories.
View Article and Find Full Text PDFCue-induced cocaine craving progressively intensifies (incubates) after withdrawal from cocaine self-administration in rats and humans. In rats, the expression of incubation ultimately depends on Ca-permeable AMPARs that accumulate in synapses onto medium spiny neurons (MSNs) in the NAc core. However, the delay in their accumulation (∼1 month after drug self-administration ceases) suggests earlier waves of plasticity.
View Article and Find Full Text PDFThe hippocampus is vulnerable to deterioration in Alzheimer's disease (AD). It is, however, a heterogeneous structure, which may contribute to the differential volumetric changes along its septotemporal axis during AD progression. Here, we investigated amyloid plaque deposition along the dorsoventral axis in two strains of transgenic AD (ADTg) mouse models.
View Article and Find Full Text PDFBehaviors that rely on the hippocampus are particularly susceptible to chronological aging, with many aged animals (including humans) maintaining cognition at a young adult-like level, but many others the same age showing marked impairments. It is unclear whether the ability to maintain cognition over time is attributable to brain maintenance, sufficient cognitive reserve, compensatory changes in network function, or some combination thereof. While network dysfunction within the hippocampal circuit of aged, learning-impaired animals is well-documented, its neurobiological substrates remain elusive.
View Article and Find Full Text PDFThe development of safe and effective treatments for age-associated neurodegenerative disorders is an on-going challenge faced by the scientific field. Key to the development of such therapies is the appropriate selection of modeling systems in which to investigate disease mechanisms and to test candidate interventions. There are unique challenges in the development of representative laboratory models of neurodegenerative diseases, including the complexity of the human brain, the cumulative and variable contributions of genetic and environmental factors over the course of a lifetime, inability to culture human primary neurons, and critical central nervous system differences between small animal models and humans.
View Article and Find Full Text PDFObjective: Studies in the post mortem human brain and in genetic mouse model suggest that dysfunctional cholinergic neurotransmission, through a loss of agonist rather than receptors may be a significant contributing factor to HD pathology. If correct, pharmacological replacement may therefore be a potential treatment strategy. We have investigated whether chronic administration of the selective nicotinic partial agonist varenicline improved motor, cognitive and affective symptoms in a transgenic mouse model of Huntington's disease.
View Article and Find Full Text PDFJ Huntingtons Dis
December 2016
In this review, we outline the role of the cholinergic system in Huntington's disease, and briefly describe the dysfunction of cholinergic transmission, cholinergic neurons, cholinergic receptors and cholinergic survival factors observed in post-mortem human brains and animal models of Huntington's disease. We postulate how the dysfunctional cholinergic system can be targeted to develop novel therapies for Huntington's disease, and discuss the beneficial effects of cholinergic therapies in pre-clinical and clinical studies.
View Article and Find Full Text PDF