Publications by authors named "Gary B. Dunphy"

and are entomopathogenic bacterial symbionts that produce toxic proteins that can interfere with the immune system of insects. Herein, we show that outer membrane proteins (OMPs) could be involved as bacterial virulence factors. Purified totals OMPs of both bacterial species were injected into fifth instar larvae of Hübner.

View Article and Find Full Text PDF

Alternative infection models of bacterial pathogenesis are useful because they reproduce some of the disease characteristics observed in higher animals. Insect models are especially useful for modeling bacterial infections, as they are inexpensive, generally less labor-intensive, and more ethically acceptable than experimentation on higher organisms. Similar to animals, insects have been shown to possess innate immune systems that respond to pathogenic bacteria.

View Article and Find Full Text PDF

Larval Galleria mellonella (L.) hemocytes form microaggregates in response to stimulation by Gram-positive bacteria. Hemocyte adhesion to foreign materials is mediated by the cAMP/ protein kinase A pathway and the β-subunit of cholera toxin using a cAMP-independent mechanism.

View Article and Find Full Text PDF

Xenorhabdus nematophila is a symbiotic bacterium of the entomopathogenic nematode Steinernema carpocapsae (Weiser). It produces several toxic proteins which interfere with the immune system of insects. The current study shows that purified pilin protein could be a virulence trait of X.

View Article and Find Full Text PDF

Nodulation, the lepidopteran insect immune response to large numbers of microbes in the blood (hemolymph) consists of the coordination of the blood cell (hemocyte) types the granular cells and plasmatocytes in terms of granular cell-bacteria adhesion and hemocyte-hemocyte adhesion (microaggregation). Hemocyte-microbe adhesion is influenced by the secondary messenger, cAMP, and cAMP-dependent protein kinase A. In the present study, cholera toxin, an AB5 protein known to indirectly stimulate adenylate cyclase, is used to examine the hemocyte responses to glass, bacteria and hemocyte-hemocyte microaggregates.

View Article and Find Full Text PDF

The innate non-self response systems of the deciduous tree pest, the forest tent caterpillar, Malacosoma disstria has been documented by us in terms of in vitro and in vivo reactions towards the Gram-positive nonpathogenic bacterium, Bacillus subtilis and Gram-negative pathogenic microbe, Xenorhabdus nematophila and their respective surface antigens, lipopoteichoic acids (LTA) and lipopolysaccharides (LPS). These studies, often conducted in whole and diluted hemolymph, preclude examination of plasma-free cellular (hemocyte) responses. Plasma-free hemocytes as primary cultures are difficult to obtain.

View Article and Find Full Text PDF

Invertebrate intracellular hemocyte signaling pathways affecting cellular-antigen responses, although defined for molluscs and some arthropods including dipteran insects, is less known for lepidopterans. Hemocytic-antigen responses of the arboreal pest lepidopteran Malacosoma disstria are linked to cAMP-dependent protein kinase A implicating cAMP in cellular hemocyte immune responses. The purpose in the present study was to determine intracellular cAMP effects on larval M.

View Article and Find Full Text PDF

Live adult and juvenile entomopathogenic Steinernema carpocapsae DD136 (P. Nematoda) were not subjected to adhesion by haemocytes of lepidopteran insect larvae of Galleria mellonella or Malacosoma disstriain vitro or in vivo. In vitro freeze-killed nematodes exhibited haemocyte attachment, the intensity increasing with time.

View Article and Find Full Text PDF

Antioxidants, dimethylsulfoxide (DMSO) and dimethylthiourea (DMTU), at concentrations not affecting the viability of blood cells (haemocytes) from the larval stage of 3 lepidopteran insects - Galleria mellonella, Lymantria dispar, and Malacosoma disstria - differed in their influence on the innate binding of haemocytes to glass, bacteria to haemocytes, and on humoral responses to alien materials. In vitro DMSO had little effect, whereas DMTU substantially impaired the adhesion of the haemocyte types, the plasmatocytes and granular cells, to slides as well as the attachment of Bacillus subtilis to these haemocytes. Although both antioxidants increased lysozyme and phenoloxidase activities, there was no correlation of enzyme activity and haemocyte adhesion responses, possibly reflecting sequestered radicals.

View Article and Find Full Text PDF

Previous research established different interactions of the insect pathogen, Xenorhabdus nematophila and nonpathogen, Bacillus subtilis, with antimicrobial hemocytes and humoral factors of larval Malacosoma disstria [Giannoulis, P., Brooks, C.L.

View Article and Find Full Text PDF

Malacosoma disstria larvae are a pest of deciduous trees. Little is known on the interaction of bacteria with the immediate hemocytic antimicrobial responses of these insects. Incubating dead Xenorhabdus nematophila and Bacillus subtilis with a mixture of serum-free granular cells and plasmatocytes in vitro revealed differential bacterial-hemocyte adhesion and differential discharge of lysozyme and phenoloxidase but not total protein.

View Article and Find Full Text PDF

Signal transduction of the innate immediate responses of insect haemocytes to foreign matter is rarely considered. Herein using a combination of adenylate cyclase inhibitors and activators and phosphodiesterase inhibitors we determined that cyclic adenosine monophosphate (cAMP) at high levels normally impairs non-self response. Haemocyte contact with glass and bacteria lowered cAMP in vitro.

View Article and Find Full Text PDF

We used the protein kinase A (PKA) specific activator Sp-8-Br-cAMPS and type I inhibitor Rp-8-Br-cAMPS alone and in combination to define the role of PKA in the non-self responses of larval Galleria mellonella haemocytes in vitro and in vivo. Active PKA depressed haemocyte responses whereas PKA inhibition enhanced activities, including bacterial phagocytosis, the number of haemocytes with adherent bacteria, bacterial-induced haemocytic protein release and haemocyte adhesion to slides in vitro, as well as in vivo bacterial removal from the haemolymph. Non-attached haemocytes had more PKA activity than attached haemocytes; therefore, active PKA limited haemocyte response to foreign materials.

View Article and Find Full Text PDF

The non-self cellular (hemocytic) responses of Galleria mellonella larvae, including the attachment to slides and the removal of the bacteria Xenorhabdus nematophila and Bacillus subtilis from the hemolymph, were affected by N-formyl peptides. Both N-formyl methionyl-leucyl-phenylalanine (fMLF) and the ester derivative decreased hemocyte adhesion in vitro, and both elevated hemocyte counts and suppressed the removal of both X. nematophila and B.

View Article and Find Full Text PDF

Culture medium affected the virulence of a strain of Candida albicans toward Galleria mellonella larvae, but the yeast growth rates in yeast extract - peptone - dextrose broth and synthetic Galleria serum were not correlated with yeast virulence. Virulent C. albicans grew rapidly in larval serum, whereas, it limited nodulation and continued development in vivo, producing toxins that damaged the hemocytes and fat body.

View Article and Find Full Text PDF

Based on the results from the use of selective inhibitors and activators, active protein kinase A, protein tyrosine kinase, and protein kinase C (PKC) isoforms decreased the adhesion of larval Galleria mellonella hemocytes to glass slides. The protein kinase A inhibitor at all concentrations increased granular cell adhesion only whereas protein tyrosine kinase elevated both granular and plasmatocyte attachment at the lowest concentration. Active, Ca(2+)- and lipid-dependent PKC isoforms limited plasmatocyte and granular cell adhesion whereas PKC that was inhibited by selected compounds (with differed modes of PKC inhibition) enhanced hemocyte attachment.

View Article and Find Full Text PDF

Apolipophorin-III (apoLp-III) impaired the adhesion of plasmatocytes and a granular cell-subpopulation of larval Galleria mellonella to glass slides. The protein bound to haemocytes, limited the responses of the plasmatocytes to Bacillus subtilis and increased the percentage of a subgroup of granular cells with adhering bacteria. The total number of bacteria adhering to all the haemocytes on the slides declined.

View Article and Find Full Text PDF

Studies with Galleria mellonella larvae and the iron chelating agent EDDA showed that iron was essential for the removal of dead Xenorhabdas nematophila and Bacillus subtilis from the haemolymph. The delay in removal of the bacteria from the iron-restricted haemolymph was attributed to reduced adhesiveness of the haemocytes and prophenoloxidase activity. Iron augmentation returned these activities to control levels.

View Article and Find Full Text PDF

Antibacterial proteins are produced in the reproductive tracts of some insect species. The advent of a pupal ovarian cell line of the lepidopteran Galleria mellonella offered an opportunity for exploring the use of ovarian tissue culture to induce antimicrobial proteins in lieu of the larvae. The ovarian cell growth rates and cell yields were maximized by adjusting Grace's medium to pH 6.

View Article and Find Full Text PDF

Studies on the interaction of the insect pathogenic bacterium, Xenorhabdus nematophilus (Enterobacteriaceae), with its nematode and insect hosts would be greatly assisted if a luminescent phenotype were generated that would allow the detection of viable bacteria in vivo without the necessity for disruption of the cellular interactions. The plasmid, pMGM221, containing the luminescence gene (luxCDABE) of Vibrio harveyi was introduced into different strains (DD136 and 19061) and phases (one and two) of X. nematophilus by triparental mating.

View Article and Find Full Text PDF