Extracellular vesicles (EVs) are essential intercellular communicators that are of increasing interest as diagnostic biomarkers. Exploring their biological functions and clinical values, however, remains challenging due to their small sizes and high heterogeneity. Herein, we report an ultrasensitive method that employs target-initiated construction of DNA nanostructure to detect single EVs with an input as low as 100 vesicles/μL.
View Article and Find Full Text PDFIncreasing applications of nanomaterials in consumer goods, industrial products, medical practices, etc., calls for the development of tools for rapid separation, quantification, and sizing of nanoparticles to ensure their safe and sustainable employment. While many techniques are available for characterization of pure, homogeneous nanomaterial preparations, particle sizing and counting remains difficult for heterogeneous mixtures that resulted from imperfect synthesis conditions, aggregation from product instability, or degradation during storage.
View Article and Find Full Text PDFThe detection of circulating miRNA through isothermal amplification wields many attractive advantages over traditional methods, such as reverse transcription RT-qPCR. However, it is challenging to control the background signal produced in the absence of target, which severely hampers applications of such methods for detecting low abundance targets in complex biological samples. In the present work, we employed both the cobalt oxyhydroxide (CoOOH) nanoflakes and the chemical modification of hexanediol to block non-specific template elongation in exponential amplification reaction (EXPAR).
View Article and Find Full Text PDFExtracellular vesicles (EVs) are cell-derived membranous vesicles that exist in nearly all biological fluids, including blood and urine; and carry a great number of cargo molecules such as protein, nucleic acids, and lipid. They may play important roles in cell-cell communication and modulation of pathological processes, which, however, are not yet well understood, calling for highly sensitive, specific, and rapid methods for EV detection and quantification in biological samples. Here, we report the CuS-enclosed microgels that not only help enrich EVs carrying specific protein markers from complex biomatrices, but also produce strong chemiluminescence (CL) to realize sensitive detection of the target EVs.
View Article and Find Full Text PDFNucleic Acids Res
December 2019
DNA methyltransferases (DNMTs) are enzymes responsible for establishing and maintaining DNA methylation in cells. DNMT inhibition is actively pursued in cancer treatment, dominantly through the formation of irreversible covalent complexes between small molecular compounds and DNMTs that suffers from low efficacy and high cytotoxicity, as well as no selectivity towards different DNMTs. Herein, we discover aptamers against the maintenance DNA methyltransferase, DNMT1, by coupling Asymmetrical Flow Field-Flow Fractionation (AF4) with Systematic Evolution of Ligands by EXponential enrichment (SELEX).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2018
Extracellular vesicles (EVs) actively participate in intercellular communication and pathological processes. Studying the molecular signatures of EVs is key to reveal their biological functions and clinical values, which, however, is greatly hindered by their sub-100 nm dimensions, the low quantities of biomolecules each EV carries, and the large population heterogeneity. Now, single-EV flow cytometry analysis is introduced to realize single EV counting and phenotyping in a conventional flow cytometer for the first time, enabled by target-initiated engineering (TIE) of DNA nanostructures on each EV.
View Article and Find Full Text PDFExosomes play important roles in mediating intercellular communication and regulating a variety of biological processes, but clear understanding of their functions and biogenesis has not been achieved, due to the high technical difficulties involved in analysis of small vesicular structures that contain a high proportion of membrane structures. Herein, we designed a novel approach to integrate two nanomaterials carrying varied surface properties, the hydrophilic, macroporous graphene foam (GF) and the amphiphilic periodic mesoporous organosilica (PMO), for efficient exosome isolation from human serum and effective protein profiling. The high specific surface area of GF, after modification with the antibody against the exosomal protein marker, CD63, allowed highly specific isolation of exosomes from complex biological samples with high recovery.
View Article and Find Full Text PDFThe present work investigates the capability of single-stranded DNA (ssDNA) in enhancing the intrinsic peroxidase-like activity of the g-CN nanosheets (NSs). We found that ssDNA adsorbed on g-CN NSs could improve the catalytic activity of the nanosheets. The maximum reaction rate of the HO-mediated TMB oxidation catalyzed by the ssDNA-NSs hybrid was at least 4 times faster than that obtained with unmodified NSs.
View Article and Find Full Text PDFNanomaterials have shown great promise in advancing biomedical and environmental analysis because of the unique properties originated from their ultrafine dimensions. In general, nanomaterials are separately applied to either enhance detection by producing strong signals upon target recognition or to specifically extract analytes taking advantage of their high specific surface area. Herein, we report a dual-functional nanomaterial-based platform that can simultaneously enrich and enable sensitive detection of multiple metal ions.
View Article and Find Full Text PDF