Publications by authors named "Gary Archer"

Article Synopsis
  • Personalized cancer vaccines are being tested for their ability to create a strong immune response against tumor-specific neoantigens caused by DNA mutations in various cancers.
  • The study found that in order to effectively target certain neoepitopes, a helper epitope is necessary to boost the immune response from CD8+ T-cells.
  • Specifically, the helper epitope P30 can enhance immune and anti-tumor responses against less immunogenic neoepitopes, offering a promising strategy for designing better cancer vaccines.
View Article and Find Full Text PDF

We recently reported the development of a fully-human, CD3-binding bispecific antibody for immunotherapy of malignant glioma. To translate this therapeutic (hEGFRvIII-CD3- bi-scFv) to clinical trials and to help further the translation of other similar CD3-binding therapeutics, some of which are associated with neurologic toxicities, we performed a good laboratory practice (GLP) toxicity study to assess for potential behavioral, chemical, hematologic, and pathologic toxicities including evaluation for experimental autoimmune encephalomyelitis (EAE). To perform this study, male and female C57/BL6 mice heterozygous for the human CD3 transgene (20/sex) were allocated to one of four designated groups.

View Article and Find Full Text PDF

The application of adoptive T cell therapies, including those using chimeric antigen receptor (CAR)-modified T cells, to solid tumors requires combinatorial strategies to overcome immune suppression associated with the tumor microenvironment. Here we test whether the inflammatory nature of oncolytic viruses and their ability to remodel the tumor microenvironment may help to recruit and potentiate the functionality of CAR T cells. Contrary to our hypothesis, VSVmIFNβ infection is associated with attrition of murine EGFRvIII CAR T cells in a B16EGFRvIII model, despite inducing a robust proinflammatory shift in the chemokine profile.

View Article and Find Full Text PDF

Purpose: Chimeric antigen receptor (CAR) T cells have shown promise against solid tumors, but their efficacy has been limited, due in part, to immunosuppression by CD4FoxP3 regulatory T cells (Tregs). Although lymphodepletion is commonly used to deplete Tregs, these regimens are nonspecific, toxic, and provide only a narrow window before Tregs repopulate hosts. Importantly, CARs have also been shown to inadvertently potentiate Tregs by providing a source of IL2 for Treg consumption.

View Article and Find Full Text PDF

Replication-competent retrovirus (RCR) is a safety concern for individuals treated with retroviral gene therapy. RCR detection assays are used to detect RCR in manufactured vector, transduced cell products infused into research subjects, and in the research subjects after treatment. In this study, we reviewed 286 control (n = 4) and transduced cell products (n = 282) screened for RCR in the National Gene Vector Biorepository.

View Article and Find Full Text PDF

Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) is an effective immunotherapy for B-cell malignancies but has failed in some solid tumors clinically. Intracerebral tumors may pose challenges that are even more significant. In order to devise a treatment strategy for patients with glioblastoma (GBM), we evaluated CARs as a monotherapy in a murine model of GBM.

View Article and Find Full Text PDF

Conventional therapy for malignant glioma fails to specifically target tumor cells. In contrast, substantial evidence indicates that if appropriately redirected, T cells can precisely eradicate tumors. Here we report the rational development of a fully human bispecific antibody (hEGFRvIII-CD3 bi-scFv) that redirects human T cells to lyse malignant glioma expressing a tumor-specific mutation of the EGFR (EGFRvIII).

View Article and Find Full Text PDF

Median survival for glioblastoma (GBM) remains <15 months. Human cytomegalovirus (CMV) antigens have been identified in GBM but not normal brain, providing an unparalleled opportunity to subvert CMV antigens as tumor-specific immunotherapy targets. A recent trial in recurrent GBM patients demonstrated the potential clinical benefit of adoptive T-cell therapy (ATCT) of CMV phosphoprotein 65 (pp65)-specific T cells.

View Article and Find Full Text PDF

Patients with glioblastoma have less than 15-month median survival despite surgical resection, high-dose radiation, and chemotherapy with temozolomide. We previously demonstrated that targeting cytomegalovirus pp65 using dendritic cells (DC) can extend survival and, in a separate study, that dose-intensified temozolomide (DI-TMZ) and adjuvant granulocyte macrophage colony-stimulating factor (GM-CSF) potentiate tumor-specific immune responses in patients with glioblastoma. Here, we evaluated pp65-specific cellular responses following DI-TMZ with pp65-DCs and determined the effects on long-term progression-free survival (PFS) and overall survival (OS).

View Article and Find Full Text PDF

After stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood.

View Article and Find Full Text PDF

Background: The epidermal growth factor receptor variant III deletion mutation, EGFRvIII, is expressed in ∼30% of primary glioblastoma and linked to poor long-term survival. Rindopepimut consists of the unique EGFRvIII peptide sequence conjugated to keyhole limpet hemocyanin. In previous phase II trials (ACTIVATE/ACT II), rindopepimut was well tolerated with robust EGFRvIII-specific immune responses and promising progression-free and overall survival.

View Article and Find Full Text PDF

Therapeutic vaccination of patients with cancer-targeting tumor-associated antigens is a promising strategy for the specific eradication of invasive malignancies with minimal toxicity to normal tissues. However, as increasingly potent modalities for stimulating immunologic responses are developed for clinical evaluation, the risk of inflammatory and autoimmune toxicities also may be exacerbated. In this report, we describe the induction of a severe (grade 3) immunologic reaction in a patient with newly diagnosed glioblastoma (GBM) receiving autologous RNA-pulsed dendritic cell (DC) vaccines admixed with GM-CSF and administered coordinately with cycles of dose-intensified temozolomide.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients.

View Article and Find Full Text PDF

Purpose: Despite aggressive conventional therapy, glioblastoma (GBM) remains uniformly lethal. Immunotherapy, in which the immune system is harnessed to specifically attack malignant cells, offers a treatment option with less toxicity. The expression of cytomegalovirus (CMV) antigens in GBM presents a unique opportunity to target these viral proteins for tumor immunotherapy.

View Article and Find Full Text PDF

A major mechanism by which human regulatory T cells (T(regs)) have been shown to suppress and kill autologous immune cells is through the granzyme-perforin pathway. However, it is unknown whether T(regs) also possess the capacity to kill tumor cells using similar mechanisms. Bispecific antibodies (bscAbs) have emerged as a promising class of therapeutics that activate T cells against tumor antigens without the need for classical MHC-restricted TCR recognition.

View Article and Find Full Text PDF

Adoptive cell transfer (ACT) using ex vivo-expanded anti-tumor T cells such as tumor-infiltrated lymphocytes or genetically engineered T cells potently eradicates established tumors. However, these two approaches possess obvious limitations. Therefore, we established a novel methodology using total tumor RNA (ttRNA) to prime dendritic cells (DC) as a platform for the ex vivo generation of anti-tumor T cells.

View Article and Find Full Text PDF

Background: Many cancers, including melanoma, exclusively express constitutive proteasomes (cPs) and are unable to express immunoproteasomes (iPs). In contrast, mature DCs used for immunotherapy exclusively express iPs. Since proteasomes generate peptides presented by HLA class I molecules, we hypothesized that mature melanoma antigen-loaded DCs engineered to process antigens through cPs would be superior inducers of antimelanoma immunity in vivo.

View Article and Find Full Text PDF

Developments in the field of bispecific antibodies have progressed rapidly in recent years, particularly in their potential role for the treatment of malignant disease. However, manufacturing stable molecules has proven to be costly and time-consuming, which in turn has hampered certain aspects of preclinical evaluation including the unavailability of appropriate "negative" controls. Bispecific molecules (e.

View Article and Find Full Text PDF

Temozolomide (TMZ) is an alkylating agent shown to prolong survival in patients with high grade glioma and is routinely used to treat melanoma brain metastases. A prominent side effect of TMZ is induction of profound lymphopenia, which some suggest may be incompatible with immunotherapy. Conversely, it has been proposed that recovery from chemotherapy-induced lymphopenia may actually be exploited to potentiate T-cell responses.

View Article and Find Full Text PDF

Bispecific antibodies (bscAbs), particularly those of the bispecific T-cell engager (BiTE) subclass, have been shown to effectively redirect T cells against cancer. Previous efforts to target antigens expressed in both tumors and normal tissues have produced significant toxicity, however. Moreover, like other large molecules, bscAbs may be restricted from entry into the "immunologically privileged" CNS.

View Article and Find Full Text PDF

Background: Preclinical studies in mice have demonstrated that the prophylactic depletion of immunosuppressive regulatory T-cells (T(Regs)) through targeting the high affinity interleukin-2 (IL-2) receptor (IL-2Rα/CD25) can enhance anti-tumor immunotherapy. However, therapeutic approaches are complicated by the inadvertent inhibition of IL-2Rα expressing anti-tumor effector T-cells.

Objective: To determine if changes in the cytokine milieu during lymphopenia may engender differential signaling requirements that would enable unarmed anti-IL-2Rα monoclonal antibody (MAbs) to selectively deplete T(Regs) while permitting vaccine-stimulated immune responses.

View Article and Find Full Text PDF

Lymphodepletion augments adoptive cell transfer during antitumor immunotherapy, producing dramatic clinical responses in patients with malignant melanoma. We report that the lymphopenia induced by the chemotherapeutic agent temozolomide (TMZ) enhances vaccine-driven immune responses and significantly reduces malignant growth in an established model of murine tumorigenesis. Unexpectedly, despite the improved antitumor efficacy engendered by TMZ-induced lymphopenia, there was a treatment related increase in the frequency of immunosuppressive regulatory T cells (T(Regs); P = .

View Article and Find Full Text PDF

Epidermal growth factor receptor variant III (EGFRvIII) is a tumor-specific mutation widely expressed in glioblastoma multiforme (GBM) and other neoplasms, but absent from normal tissues. Immunotherapeutic targeting of EGFRvIII could eliminate neoplastic cells more precisely but may be inhibited by concurrent myelosuppressive chemotherapy like temozolomide (TMZ), which produces a survival benefit in GBM. A phase II, multicenter trial was undertaken to assess the immunogenicity of an experimental EGFRvIII-targeted peptide vaccine in patients with GBM undergoing treatment with serial cycles of standard-dose (STD) (200 mg/m(2) per 5 days) or dose-intensified (DI) TMZ (100 mg/m(2) per 21 days).

View Article and Find Full Text PDF

Purpose: Immunologic targeting of tumor-specific gene mutations may allow precise eradication of neoplastic cells without toxicity. Epidermal growth factor receptor variant III (EGFRvIII) is a constitutively activated and immunogenic mutation not expressed in normal tissues but widely expressed in glioblastoma multiforme (GBM) and other neoplasms.

Patients And Methods: A phase II, multicenter trial was undertaken to assess the immunogenicity of an EGFRvIII-targeted peptide vaccine and to estimate the progression-free survival (PFS) and overall survival (OS) of vaccinated patients with newly diagnosed EGFRvIII-expressing GBM with minimal residual disease.

View Article and Find Full Text PDF

Object: Convection-enhanced delivery (CED) is a novel intracerebral drug delivery technique with considerable promise for delivering therapeutic agents throughout the CNS. Despite this promise, Phase III clinical trials employing CED have failed to meet clinical end points. Although this may be due to inactive agents or a failure to rigorously validate drug targets, the authors have previously demonstrated that catheter positioning plays a major role in drug distribution using this technique.

View Article and Find Full Text PDF