Introduction: gene therapy for treatment of Inborn errors of Immunity (IEIs) have demonstrated significant clinical benefit in multiple Phase I/II clinical trials. Current approaches rely on engineered retroviral vectors to randomly integrate copy(s) of gene-of-interest in autologous hematopoietic stem/progenitor cells (HSPCs) genome permanently to provide gene function in transduced HSPCs and their progenies. To circumvent concerns related to potential genotoxicities due to the random vector integrations in HSPCs, targeted correction with CRISPR-Cas9-based genome editing offers improved precision for functional correction of multiple IEIs.
View Article and Find Full Text PDFXMEN disease, defined as "X-linked MAGT1 deficiency with increased susceptibility to Epstein-Barr virus infection and N-linked glycosylation defect," is a recently described primary immunodeficiency marked by defective T cells and natural killer (NK) cells. Unfortunately, a potentially curative hematopoietic stem cell transplantation is associated with high mortality rates. We sought to develop an ex vivo targeted gene therapy approach for patients with XMEN using a CRISPR/Cas9 adeno-associated vector (AAV) to insert a therapeutic MAGT1 gene at the constitutive locus under the regulation of the endogenous promoter.
View Article and Find Full Text PDFX-linked chronic granulomatous disease is an immunodeficiency characterized by defective production of microbicidal reactive oxygen species (ROS) by phagocytes. Causative mutations occur throughout the 13 exons and splice sites of the CYBB gene, resulting in loss of gp91 protein. Here we report gene correction by homology-directed repair in patient hematopoietic stem/progenitor cells (HSPCs) using CRISPR/Cas9 for targeted insertion of CYBB exon 1-13 or 2-13 cDNAs from adeno-associated virus donors at endogenous CYBB exon 1 or exon 2 sites.
View Article and Find Full Text PDFGranulocytes from patients with chronic granulomatous disease (CGD) have dysfunctional phagocyte reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase that fails to generate sufficient antimicrobial reactive oxidative species. CGD patients with severe persistent fungal or bacterial infection who do not respond to antibiotic therapy may be given apheresis-derived allogeneic granulocyte transfusions from healthy volunteers to improve clearance of intractable infections. Allogeneic granulocyte donors are not HLA matched, so patients who receive the donor granulocyte products may develop anti-HLA alloimmunity.
View Article and Find Full Text PDFBackground Aim: X-linked MAGT1 deficiency with increased susceptibility to EBV-infection and N-linked glycosylation defect' (XMEN) disease is caused by mutations in the magnesium transporter 1 (MAGT1) gene. Loss of MAGT1 function results in a glycosylation defect that abrogates expression of key immune proteins such as the NKG2D receptor on CD8 T and NK cells, which is critical for the recognition and killing of virus-infected and transformed cells, a biomarker for MAGT1 function. Patients with XMEN disease frequently have increased susceptibility to EBV infections and EBV-associated B cell malignancies, for which no specific treatment options are currently available.
View Article and Find Full Text PDF