Publications by authors named "Gary A Brook"

Article Synopsis
  • Extensive brachial plexus injuries often need free functional muscle grafts due to long recovery times, requiring a two-step surgical process involving nerve transfer and eventual muscle transfer.
  • A study analyzed 327 muscle transfers over nearly two decades, evaluating motor recovery after 1.5 years using the MRC scale, showing varying outcomes based on graft length.
  • Results indicated that direct coaptation produced the best outcomes (83% reaching good muscle strength), while long nerve grafts (30-60 cm) resulted in 73% achieving similar success, but serial nerve grafts led to only 18% seeing significant recovery.
View Article and Find Full Text PDF

Schwann cell (SC) transplantation represents a promising therapeutic approach for traumatic spinal cord injury but is frustrated by barrier formation, preventing cell migration, and axonal regeneration at the interface between grafted SCs and reactive resident astrocytes (ACs). Although regenerating axons successfully extend into SC grafts, only a few cross the SC-AC interface to re-enter lesioned neuropil. To date, research has focused on identifying and modifying the molecular mechanisms underlying such scarring cell-cell interactions, while the influence of substrate topography remains largely unexplored.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed various strategies to enhance tissue repair after spinal cord injuries, focusing on using bioengineered scaffolds to bridge damaged areas.
  • The study utilized light and electron microscopy to analyze the scarring process after implantation of a collagen scaffold in rat spinal cords, revealing tightly packed, uniform cells present at both the repair site and scaffold-host interface.
  • These findings suggest that the scarring tissue contains specialized cells resembling perineurial cells, emphasizing the complexity of the healing process following spinal cord injuries and the challenges tied to scaffold integration.
View Article and Find Full Text PDF

Background: Molecular composition and topography of the extracellular matrix (ECM) influence regenerative cell migration following peripheral nerve injury (PNI). Advanced tissue engineering strategies for the repair of neurotmesis-type PNI include the development of nanofiber-containing implantable scaffolds that mimic features of the ECM to orchestrate regenerative growth. Reliable and quantifiable in vitro assays are required to assess the ability of such substrates to influence migration of the cell types of interest.

View Article and Find Full Text PDF

In this study, well-defined, 3D arrays of air-suspended melt electrowritten fibers are made from medical grade poly(ɛ-caprolactone) (PCL). Low processing temperatures, lower voltages, lower ambient temperature, increased collector distance, and high collector speeds all aid to direct-write suspended fibers that can span gaps of several millimeters between support structures. Such processing parameters are quantitatively determined using a "wedge-design" melt electrowritten test frame to identify the conditions that increase the suspension probability of long-distance fibers.

View Article and Find Full Text PDF

Neuropathic pain, a specific type of chronic pain resulting from persistent nervous tissue lesions, is a debilitating condition that affects about 7% of the population. This condition remains particularly difficult to treat because of the poor understanding of its underlying mechanisms. Drugs currently used to alleviate this chronic pain syndrome are of limited benefit due to their lack of efficacy and the elevated risk of side effects, especially after a prolonged period of treatment.

View Article and Find Full Text PDF

Severe spinal cord injury (SCI) results in permanent functional deficits, which despite pre-clinical advances, remain untreatable. Combinational approaches, including the implantation of bioengineered scaffolds are likely to promote significant tissue repair. However, this critically depends on the extent to which host tissue can integrate with the implant.

View Article and Find Full Text PDF

Tissue-engineered constructs have great potential in many intervention strategies. In order for these constructs to function optimally, they should ideally mimic the cellular alignment and orientation found in the tissues to be treated. Here we present a simple and reproducible method for the production of cell-laden pure fibrin micro-fibers with longitudinal topography.

View Article and Find Full Text PDF

Severe traumatic spinal cord injury (SCI) results in a devastating and permanent loss of function, and is currently an incurable condition. It is generally accepted that future intervention strategies will require combinational approaches, including bioengineered scaffolds, to support axon growth across tissue scarring and cystic cavitation. Previously, we demonstrated that implantation of a microporous type-I collagen scaffold into an experimental model of SCI was capable of supporting functional recovery in the absence of extensive implant-host neural tissue integration.

View Article and Find Full Text PDF

The reconstruction of peripheral nerve injuries is clinically challenging, and today, the autologous nerve transplantation is still considered as the only gold standard remedy for nerve lesions where a direct nerve coaptation is not possible. Nevertheless, the functional merits of many biomaterials have been tested as potential substitutes for the autologous nerve transplant. One of the strategies that have been pursued is the combination of bioengineered nerve guides with cellular enrichment.

View Article and Find Full Text PDF

Secondary damage following spinal cord injury leads to non-reversible lesions and hampering of the reparative process. The local production of pro-inflammatory cytokines such as TNF-α can exacerbate these events. Oligodendrocyte death also occurs, followed by progressive demyelination leading to significant tissue degeneration.

View Article and Find Full Text PDF

The implantation of bioengineered scaffolds into lesion-induced gaps of the spinal cord is a promising strategy for promoting functional tissue repair because it can be combined with other intervention strategies. Our previous investigations showed that functional improvement following the implantation of a longitudinally microstructured collagen scaffold into unilateral mid-cervical spinal cord resection injuries of adult Lewis rats was associated with only poor axon regeneration within the scaffold. In an attempt to improve graft-host integration as well as functional recovery, scaffolds were seeded with highly enriched populations of syngeneic, olfactory bulb-derived ensheathing cells (OECs) prior to implantation into the same lesion model.

View Article and Find Full Text PDF

Many bioartificial nerve guides have been investigated pre-clinically for their nerve regeneration-supporting function, often in comparison to autologous nerve transplantation, which is still regarded as the current clinical gold standard. Enrichment of these scaffolds with cells intended to support axonal regeneration has been explored as a strategy to boost axonal regeneration across these nerve guides Ansselin et al. (1998).

View Article and Find Full Text PDF

The generation of complex three-dimensional bioengineered scaffolds that are capable of mimicking the molecular and topographical cues of the extracellular matrix found in native tissues is a field of expanding research. The systematic development of such scaffolds requires the characterisation of cell behaviour in response to the individual components of the scaffold. In the present investigation, we studied cell-substrate interactions between purified populations of Schwann cells and three-dimensional fibrin hydrogel scaffolds, in the presence or absence of multiple layers of highly orientated electrospun polycaprolactone nanofibres.

View Article and Find Full Text PDF

The formation of cystic cavitation following severe spinal cord injury (SCI) constitutes one of the major barriers to successful axonal regeneration and tissue repair. The development of bioengineered scaffolds that assist in the bridging of such lesion-induced gaps may contribute to the formulation of combination strategies aimed at promoting functional tissue repair. Our previous in vitro investigations have demonstrated the directed axon regeneration and glial migration supporting properties of microstructured collagen scaffold that had been engineered to possess mechanical properties similar to those of spinal cord tissues.

View Article and Find Full Text PDF

Autologous nerve transplantation (ANT) is the clinical gold standard for the reconstruction of peripheral nerve defects. A large number of bioengineered nerve guides have been tested under laboratory conditions as an alternative to the ANT. The step from experimental studies to the implementation of the device in the clinical setting is often substantial and the outcome is unpredictable.

View Article and Find Full Text PDF
Article Synopsis
  • Behavioral tests help us understand how nerves function after injuries or treatments.
  • The rat sciatic nerve is an important model for studying nerve damage and recovery.
  • The CatWalk system is a useful tool for getting detailed and objective measurements of how rats walk, both in movement and at rest.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the interactions between motor axons and different 3D substrates using spinal cord organotypic slice cultures from rat pups.
  • It finds that motor axons grow well along Schwann cells and form crucial structures like myelin when using 3D microporous collagen scaffolds, while growth is limited on simpler fibrin hydrogels.
  • The research suggests that the 3D collagen scaffold is a promising tool for exploring substrate topography in regenerative bioengineering due to its effectiveness in supporting motor axon regeneration.
View Article and Find Full Text PDF

Glutamate-induced excitotoxicity is a major contributor to motor neuron (MN) degeneration in disorders such as amyotrophic lateral sclerosis (ALS), stroke and spinal cord injury. Numerous in vitro and in vivo models have been developed to evaluate the efficacy and mode of action of neuroprotective agents. However, the dominance of glutamate receptor-subtype in the different regions of the spinal cord in these models has generally been overlooked.

View Article and Find Full Text PDF

Evaluation of functional and structural recovery after peripheral nerve injury is crucial to determine the therapeutic effect of a nerve repair strategy. In the present study, we examined the relationship between the structural evaluation of regeneration by means of retrograde tracing and the functional analysis of toe spreading. Two standardized rat sciatic nerve injury models were used to address this relationship.

View Article and Find Full Text PDF

Objective: Here we present the epineurial sheath tube (EST) technique as a modified microsurgical rat sciatic nerve model. The EST technique provides a cavity or pouch consisting of an outer epineurial sleeve that has been freed from nerve fascicles. This cavity may be appropriate to test the effectiveness and biocompatibility of implanted growth factors, cell suspensions (embedded in solutions or gels), or bioartificial nerve guide constructs.

View Article and Find Full Text PDF

The use of bioengineered nerve guides as alternatives for autologous nerve transplantation (ANT) is a promising strategy for the repair of peripheral nerve defects. In the present investigation, we present a collagen-based micro-structured nerve guide (Perimaix) for the repair of 2 cm rat sciatic nerve defects. Perimaix is an open-porous biodegradable nerve guide containing continuous, longitudinally orientated channels for orientated nerve growth.

View Article and Find Full Text PDF

Peripheral nerve injuries that induce gaps larger than 1-2 cm require bridging strategies for repair. Autologous nerve grafts are still the gold standard for such interventions, although alternative treatments, as well as treatments to improve the therapeutic efficacy of autologous nerve grafting are generating increasing interest. Investigations are still mostly experimental, although some clinical studies have been undertaken.

View Article and Find Full Text PDF