Therapeutic proteins, the fastest growing class of pharmaceuticals, are subject to rapid proteolytic degradation in vivo, rendering them inactive. Sophisticated drug delivery systems that maintain protein stability, prolong therapeutic effects, and reduce administration frequency are urgently required. Herein, a mechanoresponsive hydrogel is developed contained within a soft robotic drug delivery (SRDD) device.
View Article and Find Full Text PDFTransplantation of donor islets of Langerhans is a potential therapeutic approach for patients with diabetes mellitus; however, its success is limited by islet death and dysfunction during the initial hypoxic conditions at the transplantation site. This highlights the need to support the donor islets in the days post-transplantation until the site is vascularized. It was previously demonstrated that the extracellular matrix (ECM) proteins nidogen-1 (NID1) and decorin (DCN) improve the functionality and survival of the β-cell line, EndoC-βH3, and the viability of human islets post-isolation.
View Article and Find Full Text PDFOur understanding of cardiac remodeling processes due to left ventricular pressure overload derives largely from animal models of aortic banding. However, these studies fail to enable control over both disease progression and reversal, hindering their clinical relevance. Here, we describe a method for progressive and reversible aortic banding based on an implantable expandable actuator that can be finely tuned to modulate aortic banding and debanding in a rat model.
View Article and Find Full Text PDFImplantable medical devices that can facilitate therapy transport to localized sites are being developed for a number of diverse applications, including the treatment of diseases such as diabetes and cancer, and tissue regeneration after myocardial infraction. These implants can take the form of an encapsulation device which encases therapy in the form of drugs, proteins, cells, and bioactive agents, in semi-permeable membranes. Such implants have shown some success but the nature of these devices pose a barrier to the diffusion of vital factors, which is further exacerbated upon implantation due to the foreign body response (FBR).
View Article and Find Full Text PDFIntroduction: Neural crest cells (NCCs) are multipotent and are attributed to the combination of complex multimodal gene regulatory mechanisms. Cardiac neural crest (CNC) cells, originating from the dorsal neural tube, are pivotal architects of the cardio-neuro-vascular domain, which orchestrates the embryogenesis of critical cardiac and vascular structures. Remarkably, while the scientific community compiled a comprehensive inventory of neural crest derivatives by the early 1980s, our understanding of the CNC's role in various cardiovascular disease processes still needs to be explored.
View Article and Find Full Text PDFThe foreign body response (FBR) to implanted materials culminates in the deposition of a hypo-permeable, collagen rich fibrotic capsule by myofibroblast cells at the implant site. The fibrotic capsule can be deleterious to the function of some medical implants as it can isolate the implant from the host environment. Modulation of fibrotic capsule formation has been achieved using intermittent actuation of drug delivery implants, however the mechanisms underlying this response are not well understood.
View Article and Find Full Text PDFAngiogenesis is critical for successful bone repair, and interestingly, miR-210 and miR-16 possess counter-active targets involved in both angiogenesis and osteogenesis: miR-210 acts as an activator by silencing EFNA3 & AcvR1b, while miR-16 inhibits both pathways by silencing VEGF & Smad5. It was thus hypothesized that dual delivery of both a miR-210 mimic and a miR-16 inhibitor from a collagen-nanohydroxyapatite scaffold system may hold significant potential for bone repair. Therefore, this systems potential to rapidly accelerate bone repair by directing enhanced angiogenic-osteogenic coupling in host cells in a rat calvarial defect model at a very early 4 week timepoint was assessed.
View Article and Find Full Text PDFThe foreign body response impedes the function and longevity of implantable drug delivery devices. As a dense fibrotic capsule forms, integration of the device with the host tissue becomes compromised, ultimately resulting in device seclusion and treatment failure. We present FibroSensing Dynamic Soft Reservoir (FSDSR), an implantable drug delivery device capable of monitoring fibrotic capsule formation and overcoming its effects via soft robotic actuations.
View Article and Find Full Text PDFOur understanding of cardiac remodeling processes due to left ventricular pressure overload derives largely from animal models of aortic banding. However, these studies fail to simultaneously enable control over disease progression and reversal, hindering their clinical relevance. Here, we describe a method for controlled, progressive, and reversible aortic banding based on an implantable expandable actuator that can be finely controlled to modulate aortic banding and debanding in a rat model.
View Article and Find Full Text PDFUnderstanding the immune system's foreign body response (FBR) is essential when developing and validating a biomaterial. Macrophage activation and proliferation are critical events in FBR that can determine the material's biocompatibility and fate in vivo. In this study, two different macro-encapsulation pouches intended for pancreatic islet transplantation were implanted into streptozotocin-induced diabetes rat models for 15 days.
View Article and Find Full Text PDFFibrosis is a consequence of the pathological remodeling of extracellular matrix (ECM) structures in the connective tissue of an organ. It is often caused by chronic inflammation, which over time, progressively leads to an excess deposition of collagen type I (COL I) that replaces healthy tissue structures, in many cases leaving a stiff scar. Increasing fibrosis can lead to organ failure and death; therefore, developing methods that potentially allow real-time monitoring of early onset or progression of fibrosis are highly valuable.
View Article and Find Full Text PDFTransplantation of islets of Langerhans is a promising alternative treatment strategy in severe cases of type 1 diabetes mellitus; however, the success rate is limited by the survival rate of the cells post-transplantation. Restoration of the native pancreatic niche during transplantation potentially can help to improve cell viability and function. Here, we assessed for the first time the regulatory role of the small leucine-rich proteoglycan decorin (DCN) in insulin secretion in human β-cells, and its impact on pancreatic extracellular matrix (ECM) protein expression in vitro.
View Article and Find Full Text PDFAnalysing the composition and organisation of the fibrous capsule formed as a result of the Foreign Body Response (FBR) to medical devices, is imperative for medical device improvement and biocompatibility. Typically, analysis is performed using histological techniques which often involve random sampling strategies. This method is excellent for acquiring representative values but can miss the unique spatial distribution of features in 3D, especially when analysing devices used in large animal studies.
View Article and Find Full Text PDFForeign body response (FBR) is a major challenge that affects implantable biosensors and medical devices, including glucose biosensors, leading to a deterioration in device response over time. Polymer shields are often used to mitigate this issue. Zwitterionic polymers (ZPs) are a promising class of materials that reduce biofouling of implanted devices.
View Article and Find Full Text PDFFibrous capsule (FC) formation, secondary to the foreign body response (FBR), impedes molecular transport and is detrimental to the long-term efficacy of implantable drug delivery devices, especially when tunable, temporal control is necessary. We report the development of an implantable mechanotherapeutic drug delivery platform to mitigate and overcome this host immune response using two distinct, yet synergistic soft robotic strategies. Firstly, daily intermittent actuation (cycling at 1 Hz for 5 minutes every 12 hours) preserves long-term, rapid delivery of a model drug (insulin) over 8 weeks of implantation, by mediating local immunomodulation of the cellular FBR and inducing multiphasic temporal FC changes.
View Article and Find Full Text PDFDiabetes mellitus refers to a group of metabolic disorders which affect how the body uses glucose impacting approximately 9% of the population worldwide. This review covers the most recent technological advances envisioned to control and/or reverse Type 1 diabetes mellitus (T1DM), many of which will also prove effective in treating the other forms of diabetes mellitus. Current standard therapy for T1DM involves multiple daily glucose measurements and insulin injections.
View Article and Find Full Text PDFChronic total occlusions (CTOs) occur in approximately 40% of individuals with symptomatic peripheral arterial disease and are indicative of critical limb ischaemia. Currently, few medical devices can effectively treat CTOs long-term, with amputation often required. This is due to a lack of knowledge of CTO anatomy, making device design and testing difficult.
View Article and Find Full Text PDFMacroencapsulation systems have been developed to improve islet cell transplantation but can induce a foreign body response (FBR). The development of neovascularization adjacent to the device is vital for the survival of encapsulated islets and is a limitation for long-term device success. Previously we developed additive manufactured multi-scale porosity implants, which demonstrated a 2.
View Article and Find Full Text PDFDelivering a clinically impactful cell number is a major design challenge for cell macroencapsulation devices for Type 1 diabetes. It is important to understand the transplant site anatomy to design a device that is practical and that can achieve a sufficient cell dose. We identify the posterior rectus sheath plane as a potential implant site as it is easily accessible, can facilitate longitudinal monitoring of transplants, and can provide nutritive support for cell survival.
View Article and Find Full Text PDFSynthetic and naturally occurring nano-sized particles present versatile vehicles for the delivery of therapy in a range of clinical settings. Their small size and modifiable physicochemical properties support refinement of targeting capabilities, immune response, and therapeutic cargo, but rapid clearance from the body and limited efficacy remain a major challenge. This highlights the need for a local sustained delivery system for nanoparticles (NPs) and extracellular vesicles (EVs) at the target site that will ensure prolonged exposure, maximum efficacy and dose, and minimal toxicity.
View Article and Find Full Text PDFCharacterized by a rapidly increasing prevalence, elevated mortality and rehospitalization rates, and inadequacy of pharmaceutical therapies, heart failure with preserved ejection fraction (HFpEF) has motivated the widespread development of device-based solutions. HFpEF is a multifactorial disease of various etiologies and phenotypes, distinguished by diminished ventricular compliance, diastolic dysfunction, and symptoms of heart failure despite a normal ejection performance; these symptoms include pulmonary hypertension, limited cardiac reserve, autonomic imbalance, and exercise intolerance. Several types of atrial shunts, left ventricular expanders, stimulation-based therapies, and mechanical circulatory support devices are currently under development aiming to target one or more of these symptoms by addressing the associated mechanical or hemodynamic hallmarks.
View Article and Find Full Text PDFA reduction in blood supply to any limb causes ischaemia, pain and morbidity. Critical limb ischaemia is the most serious presentation of peripheral vascular disease. One in five patients with critical limb ischaemia will die within six months of diagnosis and one in three will require amputation in this time.
View Article and Find Full Text PDFBackground: Quantitative methods for evaluating microstructure of arterial specimens typically rely on histologic techniques that involve random sampling, which cannot account for the unique spatial distribution of features in three dimensions.
Methods: To overcome this limitation, we demonstrate a nondestructive method for three-dimensional imaging of intact human blood vessels using microcomputed tomography (microCT). Human artery segments were dehydrated and stained in an iodine solution then imaged with a standard laboratory microCT scanner.
Tissue Eng Part C Methods
October 2021
Advancements in type 1 diabetes mellitus treatments have vastly improved in recent years. The move toward a bioartificial pancreas and other fully implantable systems could help restore patient's glycemic control. However, the long-term success of implantable medical devices is often hindered by the foreign body response.
View Article and Find Full Text PDFMedical devices, such as silicone-based prostheses designed for soft tissue implantation, often induce a suboptimal foreign-body response which results in a hardened avascular fibrotic capsule around the device, often leading to patient discomfort or implant failure. Here, it is proposed that additive manufacturing techniques can be used to deposit durable coatings with multiscale porosity on soft tissue implant surfaces to promote optimal tissue integration. Specifically, the "liquid rope coil effect", is exploited via direct ink writing, to create a controlled macro open-pore architecture, including over highly curved surfaces, while adapting atomizing spray deposition of a silicone ink to create a microporous texture.
View Article and Find Full Text PDF