Publications by authors named "Garrouste F"

Noxo1, the organizing element of the Nox1-dependent NADPH oxidase complex responsible for producing reactive oxygen species, has been described to be degraded by the proteasome. We mutated a D-box in Noxo1 to express a protein with limited degradation and capable of maintaining Nox1 activation. Wild-type (wt) and mutated Noxo1 (mut1) proteins were expressed in different cell lines to characterize their phenotype, functionality, and regulation.

View Article and Find Full Text PDF

The Microtubule-Associated Protein Tau is expressed in several cancers, including low-grade gliomas and glioblastomas. We have previously shown that Tau is crucial for the 2D motility of several glioblastoma cell lines, including U87-MG cells. Using an RNA interference (shRNA), we tested if Tau contributed to glioblastoma in vivo tumorigenicity and analyzed its function in a 3D model of multicellular spheroids (MCS).

View Article and Find Full Text PDF

The NADPH oxidase proteins catalyse the formation of superoxide anion which act as signalling molecules in physiological and pathological processes. Nox1-dependent NADPH oxidase is expressed in heart, lung, colon, blood vessels and brain. Different strategies involving Nox1 inhibition based on diphenylene iodonium derivatives are currently tested for colorectal cancer therapy.

View Article and Find Full Text PDF

α6β4 integrin is the main component of hemidesmosomes (HD) that stably anchor the epithelium to the underlying basement membrane. Epithelial cell migration requires HD remodelling, which can be promoted by epidermal growth factor (EGF). We previously showed that extracellular nucleotides inhibit growth factor-induced keratinocyte migration.

View Article and Find Full Text PDF

Insulin-like growth factor-I (IGF-I) activation of phosphoinositol 3-kinase (PI3K) is an essential pathway for keratinocyte migration that is required for epidermis wound healing. We have previously reported that activation of Galpha((q/11))-coupled-P2Y(2) purinergic receptors by extracellular nucleotides delays keratinocyte wound closure. Here, we report that activation of P2Y(2) receptors by extracellular UTP inhibits the IGF-I-induced p110alpha-PI3K activation.

View Article and Find Full Text PDF

Dynamic crosstalk between cell adhesion molecules, extracellular matrix and soluble informative factors is essential for cancer cell migration and invasion. Here, we investigated the mechanisms by which the E-cadherin/catenin complex and alpha v integrin can modulate insulin-like growth factor-I (IGF-I)-induced cell migration. Human colon mucosa, human colon cancer cell lines, HT29-D4 and HCT-8 derivatives that differ in their expression of alpha-catenin, were used as models.

View Article and Find Full Text PDF

Reepithelialization is a critical step in wound healing. It is initiated by keratinocyte migration at the wound edges. After wounding, extracellular nucleotides are released by keratinocytes and other skin cells.

View Article and Find Full Text PDF

In the tumor microenvironment, autocrine/paracrine loops of insulin-like growth factors (IGFs) contribute to cancer cell survival. However, we report here that IGF-I can send contradictory signals that interfere with cell death induced by different ligands of the tumor necrosis factor (TNF) superfamily. IGF-I protected human colon carcinoma cells from TNF-alpha-induced apoptosis, but it enhanced the apoptotic response to anti-Fas antibody and TNF-related apoptosis inducing ligand stimulation.

View Article and Find Full Text PDF

Apoptosis is a crucial mechanism to eliminate harmful cells in which growth factors and cytokines are key regulators. In HT29-D4 cells, a model of human colon carcinoma, IFNgamma presensitization is essential to induce an apoptotic response to TNFalpha whereas it only slightly enhances TRAIL-induced apoptosis. To compare the transcriptional profiles induced by TNFalpha and TRAIL and their regulation by IFNgamma, we optimized a cDNA array analysis on targeted signaling pathways and confirmed the gene expression modulations by comparative RT-PCR.

View Article and Find Full Text PDF

We have previously established that insulin-like growth factor (IGF)-I, -II and insulin exert a strong protective effect against tumor necrosis factor-alpha (TNF)-induced apoptosis in interferon-gamma (IFN)-sensitized HT29-D4 human colon carcinoma cells. In this study, we report that this effect was still operative when cells were cultured in the absence of integrin- and E-cadherin-mediated cell-extracellular matrix and cell-cell interactions. In this model, IGF-I did not activate the focal adhesion kinase, whereas it induced tyrosine phosphorylation of the insulin receptor substrate-1 and activation of the extracellular signal-related kinase 1 and 2, p38, phosphatidylinositol 3'-kinase and protein kinase B/Akt.

View Article and Find Full Text PDF

Resistance of cancer cells against apoptosis induced by death factors contributes to the limited efficiency of immune- and drug-induced destruction of tumors. We report here that insulin and insulin-like growth factor-I (IGF-I) fully protect HT29-D4 colon carcinoma cells from IFN-gamma/tumor necrosis factor-alpha (TNF) induced apoptosis. Survival signaling initiated by IGF-I was not dependent on the canonical survival pathway involving phosphatidylinositol 3'-kinase.

View Article and Find Full Text PDF

The limited proteolysis of insulin-like growth factor (IGF)-binding protein (IGFBP)-3 is a key event in the regulation of endocrine bioavailability of IGFs. Here, we investigated IGFBP-3 and IGFBP-3 proteolysis in serum from patients with colorectal cancer both before and at different times following surgery. In vivo IGFBP-3 proteolysis, estimated by immunoblot analysis of IGFBP-3 fragments in serum, and in vitro IGFBP-3 protease activity of serum, estimated by a 125I-IGFBP-3 degradation assay, allowed us to identify 2 groups of patients (IGF-M vs.

View Article and Find Full Text PDF

Extrapancreatic tumor hypoglycemia (EPTH) is associated with increased amounts of high-molecular-weight precursor forms of insulin-like growth factor (IGF)-II ('big-IGF-II') that have a primary role in the pathophysiology of hypoglycemia. In the present study, using Western ligand and immunoblotting methods, we investigated IGF-binding proteins (IGFBPs), IGFBP-3 proteolysis and big-IGF-II in pre- and postoperative serum from two patients with EPTH due to benign pleural fibroma. In the preoperative serum, IGFBP-3 was reduced and IGFBP-2 was increased compared with that from an age-matched healthy control.

View Article and Find Full Text PDF

To investigate endoproteolytic processing of the type I insulin-like growth factor receptor (IGF-IR), we have examined its structure and activity in the furin-deficient LoVo-C5 cell line. Immunoprecipitation experiments using the monoclonal anti-IGF-IR antibody (alpha-IR3) showed that LoVo-C5 cells expressed a major high molecular mass receptor (200 kDa) corresponding to the unprocessed alpha/beta pro-receptor. A small amount of successfully cleaved alpha/beta heterodimers was also produced, indicating a residual endoproteolytic cleavage activity in these cells.

View Article and Find Full Text PDF

Limited proteolysis of insulin-like-growth-factor (IGF)-binding proteins (IGFBPs) represents a key process to modulate IGF bio-availability at the cellular level. In human colon carcinomas, urokinase-type plasminogen activator (u-PA) produced by stroma cells can bind to cancer-cell-associated u-PA receptor (u-PAR), and then catalyze the conversion of plasminogen (Pg) into plasmin (Pm). We therefore investigated the interplay between the IGF and Pm systems in the HT29-D4 human colon-carcinoma-cell model.

View Article and Find Full Text PDF

To assess the autocrine function of insulin-like growth factor II (IGF-II) in the balance of proliferation and differentiation in HT29-D4 human colonic cancer cells, we studied the expression of IGF-I receptors (IGF-IR) and insulin receptors (IR) in relation to the state of cell differentiation. IGF-IR and IR were expressed in both undifferentiated and enterocyte-like differentiated HT29-D4 cells. IGF-IR had two isoforms with a 97-kDa and a 102-kDa beta-subunit.

View Article and Find Full Text PDF

We have identified one class of IGF-I-binding sites and two classes of IGF-II-binding sites at the surface of the melanoma cell line IGR39. By means of affinity labeling with 125I-IGF-I, 290-300 kDa form was characterized. Using 125I-IGF-II, a 270 kDa polypeptide was labeled, corresponding to the type II IGF receptor.

View Article and Find Full Text PDF

In this study, we have used enterocyte-like differentiated HT29-D4 human colonic carcinoma cells cultured in a glucose-free medium (HT29-D4-GAL cells) on semi-permeable supports in order to investigate the polarity of the insulin-like growth factor (IGF) system. We report that these cells secrete endogenous IGF-II predominantly (66%) from the basolateral cell surface where type I IGF receptors are almost all (> 96%) localized. HT29-D4-GAL cells also secrete IGF-binding protein (IGFBP) -2, -4, and -6 as evidenced by Western ligand and immunoblot analyses of conditioned medium.

View Article and Find Full Text PDF

We have examined the polarity of the IGF system in differentiated HT29-D4 colonic epithelial cells cultured on permeable supports. Type I IGF receptors (approximately 30,000 per cell; Kd approximately 1 nM) are highly polarized (> 97%) in the basolateral membrane, and this figure does not change whatever the stage of post-confluent differentiation. In early differentiated cells, i.

View Article and Find Full Text PDF

The clone HT29-D4 can be induced to differentiate into enterocyte-like cells, by simply removing glucose from culture medium. In this report, we used the HT29-D4 model to study the membrane segregation of the EGF receptor on epithelial intestinal cells. Differentiated and undifferentiated cells displayed a single class of EGF binding sites with similar dissociation constants.

View Article and Find Full Text PDF

It has been reported that insulin-like growth factor (IGF) II is associated with human primary colorectal tumors and colon-carcinoma cell lines. Here, we examine alterations in circulating levels of IGFs and IGF binding proteins (IGFBPs) in patients with colorectal carcinoma, and compare them to age- and nutrition-adjusted references. We report (i) an increase in serum IGF-II concentrations (about 2-fold), whereas IGF-I concentrations are regarded as normal when aging is taken into account; (ii) an apparent increase in serum IGFBP-3 levels when compared to those of healthy elderly subjects, IGFBP-3 only being detected in the 150-kDa IGFBP ternary complex as in normal serum; (iii) abnormally elevated serum IGFBP-2 levels taking into account the apparent concentrations of IGFBP-3.

View Article and Find Full Text PDF

HT29-D4 human colon-carcinoma cells have been shown to secrete insulin-like growth factor (IGF)-II and to simultaneously express type-I IGF receptors. However, the sequestration of IGF-II by several molecular forms of IGF-binding proteins (IGFBP) in the culture medium prevents the establishment of an operative IGF-II autocrine loop. IGFBPs secreted by HT29-D4 cells (HT29-D4 IGFBP) comprise isoforms of IGFBP-4 (25, 27 and 30 kDa) and 2 unidentified forms (34.

View Article and Find Full Text PDF

The HT29 human colonic carcinoma cell line secretes insulin-like growth factor (IGF)-II. We have examined these cells for expression of IGF receptors. Competitive binding assays as affinity cross-linking experiments using 125I-IGF-II fail to reveal type II IGF receptors at the cell surface.

View Article and Find Full Text PDF

Suramin, a drug that binds to several types of growth factors, has been previously shown to induce the enterocyte-like differentiation of HT29-D4 human colonic adenocarcinoma cells, suggesting that growth factors are involved in such a process. Undifferentiated HT29-D4 cells release insulin-like growth factor II (IGF-II) into the culture medium that is totally complexed to heterogeneous IGF binding proteins (IGFBP) expressing high affinities for this growth factor (Kda = 0.02 nM and Kdb = 1.

View Article and Find Full Text PDF