. This is a dosimetric study comparing stereotactic body radiotherapy (SBRT) plans of spine tumors using Brainlab Elements Spine planning module against Eclipse RapidArc plans. Dose conformity, dose gradient, dose fall-off, and patient-specific quality assurance (QA) metrics were evaluated.
View Article and Find Full Text PDFPurpose: This study aims to compare stereotactic radiosurgery (SRS) planning of epilepsy that complies with Radiosurgery or Open Surgery for Epilepsy (ROSE) guidelines in GammaKnife, non-coplanar conformal (NCC) plan in Eclipse, dynamic conformal arc (DCA) plan in Brainlab, and a volumetric modulated arc therapy (VMAT) plan in Eclipse.
Methods: Twenty plans targeting Mesial temporal lobe epilepsy (MTLE) was generated using GammaKnife, Eclipse with 20 NCC beams, Brainlab with 5 DCA, and Eclipse VMAT with 4 arcs observing ROSE trial guidelines. Multivariate analysis of variance and Wilcoxon signed-rank test were used to compare dosimetric data of the plans and perform pairwise comparison, respectively.
Purpose: The objective of this study is to develop a computational model for simulating 915 MHz microwave ablation (MWA), and verify the simulation predictions of transient temperature profiles against experimental measurements. Due to the limited experimental data characterizing temperature-dependent changes of tissue dielectric properties at 915 MHz, we comparatively assess two temperature-dependent approaches of modeling of dielectric properties: model A- piecewise linear temperature dependencies based on existing, but limited, experimental data, and model B- similar to model A, but augmented with linear decrease in electrical conductivity above 95 °C, as guided by our experimental measurements.
Methods: The finite element method was used to simulate MWA procedures in liver with a clinical 915 MHz ablation applicator.
Introduction: For computational models of microwave ablation (MWA), knowledge of the antenna design is necessary, but the proprietary design of clinical applicators is often unknown. We characterised the specific absorption rate (SAR) during MWA experimentally and compared to a multi-physics simulation.
Methods: An infrared (IR) camera was used to measure SAR during MWA within a split ex vivo liver model.
Purpose: The objective of this study is to measure through simulation the impact of (1) heterogeneity of biophysical parameters in tumor vs healthy tissue, (2) applicator placement relative to the tumor, and (3) proximity to large blood vessels on microwave ablation (MWA) treatment effect area. This will help identify the biophysical properties that have the greatest impact on improving clinical modeling of MWA procedures.
Methods: The authors' approach was to develop two-compartment models with variable tissue properties and simulate MWA procedures performed in liver with Perseon Medical's 915 MHz short-tip applicator.