Publications by authors named "Garrity R"

Uptake of circulating succinate by brown adipose tissue (BAT) and beige fat elevates whole-body energy expenditure, counteracts obesity and antagonizes systemic tissue inflammation in mice. The plasma membrane transporters that facilitate succinate uptake in these adipocytes remain undefined. Here we elucidate a mechanism underlying succinate import into BAT via monocarboxylate transporters (MCTs).

View Article and Find Full Text PDF

Empyema necessitatis (EN) is an exceedingly rare complication of empyema. EN refers to the expansion and progression of an empyema beyond the thoracic cavity toward the skin wall. Herein, we present the case of a man with EN and detail his clinical course.

View Article and Find Full Text PDF

C-Terminal residues play a pivotal role in dictating the structure and functions of proteins. Herein, we report a mild, efficient, chemoselective, and site-selective chemical method that allows for precise chemical proteolysis at C-terminal arginine dictated by 9,10-phenanthrenequinone independent of the remaining sequence. This biomimetic approach also exhibits the potential to synthesize C-terminal methyl ester (-COMe) peptides.

View Article and Find Full Text PDF

Originally identified in fibroblasts, Protease Inhibitor (PI)16 was recently shown to be crucial for the development of neuropathic pain via effects on blood-nerve barrier permeability and leukocyte infiltration, though its impact on inflammatory pain has not been established. Using the complete Freund's Adjuvant inflammatory pain model, we show that Pi16 mice are protected against sustained inflammatory pain. Accordingly, intrathecal delivery of a PI16 neutralizing antibody in wild-type mice prevented sustained CFA pain.

View Article and Find Full Text PDF

Uptake of circulating succinate by brown adipose tissue (BAT) and beige fat elevates whole body energy expenditure, counteracts obesity, and antagonizes systemic tissue inflammation in mice. The plasma membrane transporters that facilitate succinate uptake in these adipocytes remain undefined. Here we elucidate a mechanism underlying succinate import into BAT via monocarboxylate transporters (MCTs).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied brown fat tissue (BAT) in a diverse group of 163 mice to learn how it affects metabolism, unlike past studies which focused on just one type of mouse.
  • They found over 10,000 proteins in BAT and figured out how some work together, identifying 2,578 proteins that help regulate BAT.
  • The team also discovered specific proteins like SFXN5, LETMD1, and ATP1A2 that can help control fat burning and body fat, helping us understand more about how BAT works in metabolism.
View Article and Find Full Text PDF

Mitochondria generate heat due to H leak (I) across their inner membrane. I results from the action of long-chain fatty acids on uncoupling protein 1 (UCP1) in brown fat and ADP/ATP carrier (AAC) in other tissues, but the underlying mechanism is poorly understood. As evidence of pharmacological activators of I through UCP1 and AAC is lacking, I is induced by protonophores such as 2,4-dinitrophenol (DNP) and cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP).

View Article and Find Full Text PDF
Article Synopsis
  • Uncoupling protein 1 (UCP1) is crucial for regulating energy expenditure in brown and beige fat, but previous loss-of-function models showed issues with the entire energy pathway, making UCP1's role unclear.
  • Researchers identified a specific site (cysteine-253) on UCP1 that, when modified, boosts its activity and created a genetic mouse model lacking this site (UCP1 C253A) to study its effects.
  • UCP1 C253A mice had reduced thermogenesis but did not gain extra fat; instead, they experienced tissue stress and inflammation in males, which was mitigated in females due to higher systemic estrogen levels.
View Article and Find Full Text PDF

Gene-editing technologies, which include the CRISPR-Cas nucleases and CRISPR base editors, have the potential to permanently modify disease-causing genes in patients. The demonstration of durable editing in target organs of nonhuman primates is a key step before in vivo administration of gene editors to patients in clinical trials. Here we demonstrate that CRISPR base editors that are delivered in vivo using lipid nanoparticles can efficiently and precisely modify disease-related genes in living cynomolgus monkeys (Macaca fascicularis).

View Article and Find Full Text PDF
Article Synopsis
  • Non-alcoholic fatty liver disease (NAFLD) is a common liver condition linked to obesity and type 2 diabetes, characterized by liver inflammation that contributes to disease progression.
  • The study identifies a pathway regulated by uncoupling protein 1 (UCP1) in brown and beige fat that helps combat liver inflammation, operating independently of any impact on obesity itself.
  • Findings suggest that enhancing UCP1 activity could help reduce liver inflammation and improve overall liver health, providing a potential therapeutic approach for managing NAFLD.
View Article and Find Full Text PDF

In response to skeletal muscle contraction during exercise, paracrine factors coordinate tissue remodeling, which underlies this healthy adaptation. Here we describe a pH-sensing metabolite signal that initiates muscle remodeling upon exercise. In mice and humans, exercising skeletal muscle releases the mitochondrial metabolite succinate into the local interstitium and circulation.

View Article and Find Full Text PDF
Article Synopsis
  • Oxidation of cysteine thiols by reactive oxygen species (ROS) activates thermogenesis in brown and beige fat tissues, crucial for energy expenditure.
  • The study developed a mass spectrometric method to detect selenium incorporation into proteins, uncovering unexpected selenium use in proteins not conventionally coded for it.
  • Increased cellular levels of organic selenium, particularly through dietary supplementation, enhanced selenium incorporation into the uncoupling protein 1 (UCP1), boosting energy expenditure and offering protection against obesity.
View Article and Find Full Text PDF

Mammalian tissues engage in specialized physiology that is regulated through reversible modification of protein cysteine residues by reactive oxygen species (ROS). ROS regulate a myriad of biological processes, but the protein targets of ROS modification that drive tissue-specific physiology in vivo are largely unknown. Here, we develop Oximouse, a comprehensive and quantitative mapping of the mouse cysteine redox proteome in vivo.

View Article and Find Full Text PDF

The mitochondrial ADP/ATP carrier (AAC) is a major transport protein of the inner mitochondrial membrane. It exchanges mitochondrial ATP for cytosolic ADP and controls cellular production of ATP. In addition, it has been proposed that AAC mediates mitochondrial uncoupling, but it has proven difficult to demonstrate this function or to elucidate its mechanisms.

View Article and Find Full Text PDF

Thermogenesis by brown and beige adipose tissue, which requires activation by external stimuli, can counter metabolic disease. Thermogenic respiration is initiated by adipocyte lipolysis through cyclic AMP-protein kinase A signalling; this pathway has been subject to longstanding clinical investigation. Here we apply a comparative metabolomics approach and identify an independent metabolic pathway that controls acute activation of adipose tissue thermogenesis in vivo.

View Article and Find Full Text PDF

We have prepared glycosylated analogues of the principal neutralizing determinant of gp120 and studied their conformations by NMR and circular dichroism spectroscopies. The 24-residue peptide from the HIV-1IIIB isolate (residues 308-331) designated RP135, which contains the immunodominant tip of the V3 loop, was glycosylated with both N- and O-linked sugars. The structures of two glycopeptides, one with an N-linked beta-glucosamine (RP135NG) and the other with two O-linked alpha-galactosamine units (RP135digal), were studied by NMR and circular dichroism spectroscopies.

View Article and Find Full Text PDF

Acute HIV-1 infection is often manifested with a high level of viremia. The cell types and tissues/organs that contribute to the virus load are thought to be of central and peripheral lymphoreticular origin. The establishment and permissiveness of organ-based cell culture systems from spleen with laboratory strains or primary isolates of HIV-1 have not been reported.

View Article and Find Full Text PDF

Immunodominant epitopes are known to suppress a primary immune response to other antigenic determinants by a number of mechanisms. Many pathogens have used this strategy to subvert the immune response and may be a mechanism responsible for limited vaccine efficacies. HIV-1 vaccine efficacy appears to be complicated similarly by a limited, immunodominant, isolate-restricted immune response generally directed toward determinants in the third variable domain (V3) of the major envelope glycoprotein, gp120.

View Article and Find Full Text PDF

Recent interest focused on the dynamics of HIV-1 replication in primary monocytes/macrophages and T-lymphocytes of the immune system, as well as the standardization of virological and immunological in vitro assays with primary isolates, provided the impetus for these studies. These types of studies have never been performed as they would occur in vivo, i.e.

View Article and Find Full Text PDF

The production of immunoglobulin capable of neutralizing the infectivity of a virus represents one of the most remarkable molecular accomplishments of the host's available immune defenses. It should be no surprise that a virus that has existed in the parenchyma of the immune system has evolved as an equally dynamic molecule (i.e.

View Article and Find Full Text PDF