MicroRNAs (miRNAs, miRs) are short noncoding RNAs that act to repress expression of proteins from target mRNA transcripts. miRNAs influence many cellular processes including stemness, proliferation, differentiation, maintenance, and survival, and miRNA mutations or misexpression are associated with a variety of disease states. The miR-183 family gene cluster including miR-183, miR-96, and miR-182 is highly conserved among vertebrate and invertebrate organisms, and the miRNAs are coordinately expressed with marked specificity in sensory neurons and sensory epithelial cells.
View Article and Find Full Text PDFGermline mutations in Mir96, one of three co-expressed polycistronic miRNA genes (Mir96, Mir182, Mir183), cause hereditary hearing loss in humans and mice. Transgenic FVB/NCrl- Tg(GFAP-Mir183,Mir96,Mir182)MDW1 mice (Tg), which overexpress this neurosensory-specific miRNA cluster in the inner ear, were developed as a model system to identify, in the aggregate, target genes and biologic processes regulated by the miR-183 cluster. Histological assessments demonstrate Tg homozygotes have a modest increase in cochlear inner hair cells (IHCs).
View Article and Find Full Text PDFOver 5% of the global population suffers from disabling hearing loss caused by multiple factors including aging, noise exposure, genetic predisposition, or use of ototoxic drugs. Sensorineural hearing loss is often caused by the loss of sensory hair cells (HCs) of the inner ear. A barrier to hearing restoration after HC loss is the limited ability of mammalian auditory HCs to spontaneously regenerate.
View Article and Find Full Text PDFAge-related hearing loss is a progressive sensorineural hearing loss that occurs during aging. Degeneration of the organ of Corti and atrophy of the lateral wall of the cochlear duct (or scala media) in the inner ear are the two primary causes. MicroRNAs (miRNAs), a class of short non-coding RNAs that regulate the expression of mRNA/protein targets, are important regulators of cellular senescence and aging.
View Article and Find Full Text PDFGene therapeutic approaches are needed that can simultaneously induce the well-controlled expression of therapeutic genes and suppress the expression of disease-causing genes for maximization of their efficacy. To address this challenge, we designed an allosteric ribozyme that comprises a Tetrahymena group I-based trans-splicing ribozyme as an active domain for RNA replacement, a small molecule-specific RNA aptamer as a sensor domain, and a communication module as an active transfer domain. The effectiveness of this approach was assessed by constructing various ribozymes in combination with a theophylline-binding aptamer to identify an allosteric ribozyme, which is controlled by theophylline both in vitro and in cells.
View Article and Find Full Text PDFInner hair cells (IHCs) and outer hair cells (OHCs) are the two types of sensory receptor cells that are critical for hearing in the mammalian cochlea. IHCs and OHCs have different morphology and function. The genetic mechanisms that define their morphological and functional specializations are essentially unknown.
View Article and Find Full Text PDFBackground: Orofacial clefts are common worldwide and result from insufficient growth and/or fusion during the genesis of the derivatives of the first pharyngeal arch and the frontonasal prominence. Recent studies in mice carrying conditional and tissue-specific deletions of the human ortholog Dicer1, an RNAse III family member, have highlighted its importance in cell survival, differentiation, proliferation, and morphogenesis. Nevertheless, information regarding Dicer1 and its dependent microRNAs (miRNAs) in mammalian palatogenesis and orofacial development is limited.
View Article and Find Full Text PDFMicroRNAs (miRNAs), a class of short non-coding RNAs that regulate the expression of mRNA targets, are important regulators of cellular senescence and aging. We questioned which miRNAs are involved in age-related degeneration of the organ of Corti (OC), the auditory sensory epithelium that transduces mechanical stimuli to electrical activity in the inner ear. Degeneration of the OC is generally accepted as the main cause of age-related hearing loss (ARHL), a progressive loss of hearing in individuals as they grow older.
View Article and Find Full Text PDFMicroRNAs (miRNAs) post-transcriptionally repress complementary target gene expression and can contribute to cell differentiation. The coordinate expression of miRNA-183 family members (miR-183, miR-96, and miR-182) has been demonstrated in sensory cells of the mouse inner ear and other vertebrate sensory organs. To further examine hair cell miRNA expression in the mouse inner ear, we have analyzed miR-183 family expression in wild type animals and various mutants with defects in neurosensory development.
View Article and Find Full Text PDFCryptosporidium parvum is a protozoan parasite that infects gastrointestinal epithelial cells and causes diarrhoeal disease in humans and animals globally. Pathological changes following C. parvum infection include crypt hyperplasia and a modest inflammatory reaction with increased infiltration of lymphocytes into intestinal mucosa.
View Article and Find Full Text PDFCranial development is critically influenced by the relative growth of distinct elements. Previous studies have shown that the transcription factor Foxg1 is essential the for development of the telencephalon, olfactory epithelium, parts of the eye and the ear. Here we investigate the effects of a Foxg1-cre-mediated conditional deletion of Dicer1 and microRNA (miRNA) depletion on mouse embryos.
View Article and Find Full Text PDFThe bacterial glmS ribozyme is mechanistically unique among both riboswitches and RNA catalysts. Its self-cleavage activity is the basis of riboswitch regulation of glucosamine-6-phosphate (GlcN6P) production, and catalysis requires GlcN6P as a coenzyme. Previous work has shown that the coenzyme amine of GlcN6P is essential for glmS ribozyme self-cleavage, as is its protonation state.
View Article and Find Full Text PDFThe message is loud and clear. MicroRNA-96, one in a cluster of three related neurosensory microRNAs, is crucial to the development and maintenance of inner ear hair cells and hearing in mice and humans. Two recent studies show that mutations in the critical seed region of the microRNA underlie the cause of hair cell degeneration and progressive hearing loss.
View Article and Find Full Text PDFInner ear development requires coordinated transformation of a uniform sheet of cells into a labyrinth with multiple cell types. While numerous regulatory proteins have been shown to play critical roles in this process, the regulatory functions of microRNAs (miRNAs) have not been explored. To demonstrate the importance of miRNAs in inner ear development, we generated conditional Dicer knockout mice by the expression of Cre recombinase in the otic placode at E8.
View Article and Find Full Text PDFRiboswitches are RNA elements capable of modulating gene expression through interaction with cellular metabolites. One member of the riboswitch family, the glmS riboswitch, is unique among riboswitches in that it modulates gene expression by undergoing self-cleavage in the presence of its metabolite glucosamine-6-phosphate (GlcN6P). In order to investigate the interactions between the glmS RNA and GlcN6P we performed nucleotide analog interference mapping (NAIM) and suppression (NAIS).
View Article and Find Full Text PDFThe impact of small RNA function has resonated throughout nearly every aspect of eukaryotic biology and captured the varied interests of researchers, whether they are endeavoring to understand the basis of development and disease or seeking novel therapeutic targets and tools. The genetic regulatory roles of microRNAs (miRNAs) are particularly interesting given that these often highly conserved factors post-transcriptionally silence many complementary target genes by inhibiting messenger RNA translation. In this regard, miRNAs can be considered as counterparts to transcription factors, the ensemble of which establishes the set of expressed genes that define the characteristics of a specific cell type.
View Article and Find Full Text PDFBiliary epithelial cells (cholangiocytes) respond to proinflammatory cytokines such as IFN-gamma and actively participate in the regulation of biliary inflammatory response in the liver. B7-H1 (also known as CD274 or PD-L1) is a member of the B7 costimulatory molecules and plays a critical immunoregulatory role in cell-mediated immune responses. In this study, we show that resting human cholangiocytes in culture express B7-H1 mRNA, but not B7-H1 protein.
View Article and Find Full Text PDFMany elderly people worldwide lose the neurosensory part of their ear and turn deaf. Cochlear implants to restore some hearing after neurosensory hearing loss are, at present, the only therapy for these people. In contrast to this therapy, replacement of hair cells via stem cell therapies holds the promise for a cure.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are an integral component of the metazoan genome and affect posttranscriptional repression of target messenger RNAs. The extreme phylogenetic conservation of certain miRNAs suggests their ancient origin and crucial function in conserved developmental processes. We demonstrate that highly conserved miRNA-183 orthologs exist in both deuterostomes and protostomes and their expression is predominant in ciliated ectodermal cells and organs.
View Article and Find Full Text PDFThe molecular basis of mechanosensation, mechanosensory cell development and mechanosensory organ development is reviewed with an emphasis on its evolution. In contrast to eye evolution and development, which apparently modified a genetic program through intercalation of genes between the master control genes on the top (Pax6, Eya1, Six1) of the hierarchy and the structural genes (rhodopsin) at the bottom, the as yet molecularly unknown mechanosensory channel precludes such a firm conclusion for mechanosensors. However, recent years have seen the identification of several structural genes which are involved in mechanosensory tethering and several transcription factors controlling mechanosensory cell and organ development; these warrant the interpretation of available data in very much the same fashion as for eye evolution: molecular homology combined with potential morphological parallelism.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small non-coding RNAs that function through the RNA interference (RNAi) pathway and post-transcriptionally regulate gene expression in eukaryotic organisms. While miRNAs are known to affect cellular proliferation, differentiation, and morphological development, neither their expression nor roles in mammalian inner ear development have been characterized. We have investigated the extent of miRNA expression at various time points throughout maturation of the postnatal mouse inner ear by microarray analysis.
View Article and Find Full Text PDFThe glmS ribozyme resides in the 5' untranslated region of glmS mRNA and functions as a catalytic riboswitch that regulates amino sugar metabolism in certain Gram-positive bacteria. The ribozyme catalyzes self-cleavage of the mRNA and ultimately inhibits gene expression in response to binding of glucosamine-6-phosphate (GlcN6P), the metabolic product of the GlmS protein. We have used nucleotide analog interference mapping (NAIM) and suppression (NAIS) to investigate backbone and nucleobase functional groups essential for ligand-dependent ribozyme function.
View Article and Find Full Text PDFNucleic Acids Res
February 2006
The glmS ribozyme is a self-cleaving RNA catalyst that resides in the 5'-untranslated region of glmS mRNA in certain bacteria. The ribozyme is specifically activated by glucosamine-6-phosphate (GlcN6P), the metabolic product of the GlmS protein, and is thus proposed to provide a feedback mechanism of riboswitch regulation. Both phylogenetic and biochemical analyses of the glmS ribozyme have established a highly conserved core sequence and secondary structure required for GlcN6P-dependent self-cleavage.
View Article and Find Full Text PDFNatural RNA catalysts (ribozymes) perform essential reactions in biological RNA processing and protein synthesis, whereby catalysis is intrinsic to RNA structure alone or in combination with metal ion cofactors. The recently discovered glmS ribozyme is unique in that it functions as a glucosamine-6-phosphate (GlcN6P)-dependent catalyst believed to enable "riboswitch" regulation of amino-sugar biosynthesis in certain prokaryotes. However, it is unclear whether GlcN6P functions as an effector or coenzyme to promote ribozyme self-cleavage.
View Article and Find Full Text PDF