Publications by authors named "Garrett Heffner"

Gene therapy currently in development for hemoglobinopathies utilizes ex vivo lentiviral transduction of CD34 hematopoietic stem and progenitor cells (HSPCs). A small-molecule screen identified prostaglandin E (PGE) as a positive mediator of lentiviral transduction of CD34 cells. Supplementation with PGE increased lentiviral vector (LVV) transduction of CD34 cells approximately 2-fold compared to control transduction methods with no effect on cell viability.

View Article and Find Full Text PDF

Haematopoietic stem and progenitor cell (HSPC) transplant is a widely used treatment for life-threatening conditions such as leukaemia; however, the molecular mechanisms regulating HSPC engraftment of the recipient niche remain incompletely understood. Here we develop a competitive HSPC transplant method in adult zebrafish, using in vivo imaging as a non-invasive readout. We use this system to conduct a chemical screen, and identify epoxyeicosatrienoic acids (EETs) as a family of lipids that enhance HSPC engraftment.

View Article and Find Full Text PDF

Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitotic entry.

View Article and Find Full Text PDF

The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse.

View Article and Find Full Text PDF

During development, the hematopoietic lineage transits through hemogenic endothelium, but the signaling pathways effecting this transition are incompletely characterized. Although the Hedgehog (Hh) pathway is hypothesized to play a role in patterning blood formation, early embryonic lethality of mice lacking Hh signaling precludes such analysis. To determine a role for Hh signaling in patterning of hemogenic endothelium, we assessed the effect of altered Hh signaling in differentiating mouse ES cells, cultured mouse embryos, and developing zebrafish embryos.

View Article and Find Full Text PDF

BMP and Wnt signaling pathways control essential cellular responses through activation of the transcription factors SMAD (BMP) and TCF (Wnt). Here, we show that regeneration of hematopoietic lineages following acute injury depends on the activation of each of these signaling pathways to induce expression of key blood genes. Both SMAD1 and TCF7L2 co-occupy sites with master regulators adjacent to hematopoietic genes.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) must exhibit tight regulation of both self-renewal and differentiation to maintain homeostasis of the hematopoietic system as well as to avoid aberrations in growth that may result in leukemias or other disorders. In this study, we sought to understand the molecular basis of lineage determination, with particular focus on factors that influence megakaryocyte/erythrocyte-lineage commitment, in hematopoietic stem and progenitor cells. We used intracellular flow cytometry to identify two novel hematopoietic progenitor populations within the mouse bone-marrow cKit(+) Lineage (-) Sca1(+) (KLS) Flk2 (+) compartment that differ in their protein-level expression of GATA1, a critical megakaryocyte/erythrocyte-promoting transcription factor.

View Article and Find Full Text PDF

Intracellular flow cytometry permits quantitation of diverse molecular targets at the single-cell level. However, limitations in detection sensitivity inherently restrict the method, sometimes resulting in the inability to measure proteins of very low abundance or to differentiate cells expressing subtly different protein concentrations. To improve these measurements, an enzymatic amplification approach called tyramide signal amplification (TSA) was optimized for assessment of intracellular kinase cascades.

View Article and Find Full Text PDF

Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas.

View Article and Find Full Text PDF

The hematopoietic system is an invaluable model both for understanding basic developmental biology and for developing clinically relevant cell therapies. Using highly purified cells and rigorous microarray analysis we have compared the expression pattern of three of the most primitive hematopoietic subpopulations in adult mouse bone marrow: long-term hematopoietic stem cells (HSC), short-term HSC, and multipotent progenitors. All three populations are capable of differentiating into a spectrum of mature blood cells, but differ in their self-renewal and proliferative capacity.

View Article and Find Full Text PDF