Publications by authors named "Garrett Edmunds"

For decades, researchers have endeavored to develop a general automated system to synthesize oligosaccharides that is comparable to the preparation of oligonucleotides and oligopeptides by commercially available machines. Inspired by the success of automated oligosaccharide synthesis through chemical glycosylation, a fully automated system is reported for oligosaccharides synthesis through enzymatic glycosylation in aqueous solution. The designed system is based on the use of a thermosensitive polymer and a commercially available peptide synthesizer.

View Article and Find Full Text PDF

Oligosaccharides together with oligonucleotides and oligopeptides comprise the three major classes of natural biopolymers. Automated systems for oligonucleotide and oligopeptide synthesis have significantly advanced developments in biological science by allowing nonspecialists to rapidly and easily access these biopolymers. Researchers have endeavored for decades to develop a comparable general automated system to synthesize oligosaccharides.

View Article and Find Full Text PDF

A cation exchange assisted binding-elution (BE) strategy for enzymatic synthesis of human milk oligosaccharides (HMOs) was developed. An amino linker was used to provide the cation ion under acidic condition which can be readily bound to cation exchange resin and then eluted off by saturated ammonium bicarbonate. Ammonium bicarbonate in the collections was easily removed by vacuum evaporation.

View Article and Find Full Text PDF

Reductive amination is an indispensable method for glycomic analysis, as it tremendously facilitates glycan characterization and quantification by coupling functional tags at the reducing ends of glycans. However, traditional in-solution derivatization based approach for the preparation of reductively aminated glycans is quite tedious and time-consuming. Here, a simpler and more efficient strategy termed solid-phase reductive amination was investigated.

View Article and Find Full Text PDF

Unlabelled: Core-fucosylation (CF) plays important roles in regulating biological processes in eukaryotes. Alterations of CF-glycosites or CF-glycans in bodily fluids correlate with cancer development. Therefore, global research of protein core-fucosylation with an emphasis on proteomics can explain pathogenic and metastasis mechanisms and aid in the discovery of new potential biomarkers for early clinical diagnosis.

View Article and Find Full Text PDF