Extracellular matrix (ECM) proteins provide anchorage and structural strength to cells and tissues in the body and, thus, are fundamental molecular components for processes of cell proliferation, growth, and function. Atomic force microscopy (AFM) has increasingly become a valuable approach for studying biological molecules such as ECM proteins at the level of individual molecules. Operational modes of AFM can be used to acquire the measurements of the physical, electronic, and mechanical properties of samples, as well as for viewing the intricate details of the surface chemistry of samples.
View Article and Find Full Text PDFSupramolecular Cu(II) complexes were prepared from two trifunctional β-diketone ligands. The ligands (CHSi(phacH) and CHSi(phprH), represented by LH) contain three aryl-β-diketone moieties joined by an organosilicon group. The complexes have the empirical formula CuL, as expected for combinations of Cu and L.
View Article and Find Full Text PDFInformation of the chemical, mechanical, and electrical properties of materials can be obtained using force volume mapping (FVM), a measurement mode of scanning probe microscopy (SPM). Protocols have been developed with FVM for a broad range of materials, including polymers, organic films, inorganic materials, and biological samples. Multiple force measurements are acquired with the FVM mode within a defined 3D volume of the sample to map interactions (i.
View Article and Find Full Text PDFA trace amount of interfacial water is required to initiate hydrosilation reactions of trifunctional organosilanes to form surface assemblies. In recent studies, we have learned that water also has a critical role in directing molecular placement on surfaces because water can react with silicon to provide oxygenated sites for surface binding. Consequently, the wettability nature of substrates influences the placement and density of organosilane films formed by vapor-phase reactions.
View Article and Find Full Text PDFThe surface assembly of 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) using silicon tetrachloride as a coupling agent was investigated using atomic force microscopy (AFM). Nanopatterned films of Si-OEP were prepared by protocols of colloidal lithography to evaluate the morphology, thickness, and molecular orientation for samples prepared on Si(111). The natural self-stacking of porphyrins can pose a challenge for molecular patterning.
View Article and Find Full Text PDFThe vibration of Fe3O4 nanoparticles in response to an alternating magnetic field can be sensitively detected using contact mode atomic force microscopy (AFM) combined with selective modulation of magnetic domains. While imaging patterned samples of magnetic nanoparticles with contact mode AFM, a magnetic field was applied to drive sample vibration. The field altered in polarity and strength according to parameters of an AC current applied to a solenoid located under the sample.
View Article and Find Full Text PDFNanostructures of 4-(chloromethyl)phenyltrichlorosilane (CMPS) were used as a foundation to attach and grow heterostructures of porphyrins and organosilanes. A protocol was developed with particle lithography using steps of immersion in organosilane solutions to selectively passivate the surface of Si(111) with octadecyltrichlorosilane (OTS). A methyl-terminated matrix was chosen to direct the growth of CMPS nanostructures to fill the uncovered sites of Si(111) to enable spatial confinement of the surface reaction.
View Article and Find Full Text PDFVisible-light irradiation of phthalimide esters in the presence of the photosensitizer [Ru(bpy)] and the stoichiometric reducing agent benzyl nicotinamide results in the formation of alkyl radicals under mild conditions. This approach to radical generation has proven useful for the synthesis of small organic molecules. Herein, we demonstrate for the first time the visible-light photosensitized deposition of robust alkyl thin films on Au surfaces using phthalimide esters as the alkyl radical precursors.
View Article and Find Full Text PDFA practical approach for preparing protein nanopatterns has been to design surface templates of nanopatterns of alkanethiols or organosilanes that will selectively bind and localize the placement of biomolecules. Particle lithography provides a way to prepare millions of protein nanopatterns with a few basic steps. For our nanopatterning strategy, organosilanes with methoxy and sulfhydryl groups were chosen as a surface template.
View Article and Find Full Text PDFProtocols for nanopatterning porphyrins on Au(111) were developed based on immersion particle lithography. Porphyrins with and without a central metal ion, 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin cobalt(II) (CoTPP), were selected for study, which spontaneously formed nanorod geometries depending on concentration parameters. The elongated shapes of the nanorods offers an opportunity for successive distance-dependent conductive probe atomic force microscopy (CP-AFM) measurements along the length of the nanorods.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2017
The conductive properties of nanodots of model porphyrins were investigated using conductive-probe atomic force microscopy (CP-AFM). Porphyrins provide excellent models for preparing surface structures that can potentially be used as building blocks for devices. The conjugated, planar structure of porphyrins offers opportunities for tailoring the electronic properties.
View Article and Find Full Text PDFAmong the modes of scanning probe microscopy (SPM), force modulation microscopy (FMM) is often used to acquire mechanical properties of samples concurrent with topographic information. The FMM mode is useful for investigations with polymer and organic thin film samples. Qualitative evaluation of the mixed domains of co-polymers or composite films can often be accomplished with high resolution using FMM phase and amplitude images.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2016
A stepwise chemistry route was used to prepare arrays of polymer nanostructures of poly(N-allyl glycine) on Si(111) using particle lithography. The nanostructures were used for studying surface reactions with advanced measurements of atomic force microscopy (AFM). In the first step to fabricate the surface platform, isolated nanopores were prepared within a thin film of octadecyltrichlorosilane (OTS).
View Article and Find Full Text PDFVisible light photoredox catalysis was combined with immersion particle lithography to prepare polynitrophenylene organic films on Au(111) surfaces, forming a periodic arrangement of nanopores. Surfaces masked with mesospheres were immersed in solutions of p-nitrobenzenediazonium tetrafluoroborate and irradiated with blue LEDs in the presence of the photoredox catalyst Ru(bpy)3(PF6)2 to produce p-nitrophenyl radicals that graft onto gold substrates. Surface masks of silica mesospheres were used to protect small, discrete regions of the Au(111) surface from grafting.
View Article and Find Full Text PDFWe introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles.
View Article and Find Full Text PDFThe solution-phase self-assembly of bidentate 16-[3,5-bis(mercapto-methyl)phenoxy]hexadecanoic acid (BMPHA) on Au(111) was studied using nano-fabrication protocols with scanning probe nanolithography and immersion particle lithography. Molecularly thin films of BMPHA prepared by surface self-assembly have potential application as spatially selective layers in sensor designs. Either monolayer or bilayer films of BMPHA can be formed under ambient conditions, depending on the parameters of concentration and immersion intervals.
View Article and Find Full Text PDFAn emerging challenge for nanoscale measurements is to capture and quantify the magnitude of structural changes in response to environmental changes. Certain environmental parameters can affect the nanoscale morphology of samples, such as changing the pH, solvent polarity, ionic strength, and temperature. We prepared test platforms of n-octadecyltrichlorosilane ring nanostructures to study surface morphology changes at the nanoscale in selected liquid media compared to dry conditions in air.
View Article and Find Full Text PDFThe solution self-assembly of multidentate organothiols onto Au(111) was studied in situ using scanning probe nanolithography and time-lapse atomic force microscopy (AFM). Self-assembled monolayers (SAMs) prepared from dilute solutions of multidentate thiols were found to assemble slowly, requiring more than six hours to generate films. A clean gold substrate was first imaged in ethanolic media using liquid AFM.
View Article and Find Full Text PDFWe introduce an approach based on particle lithography to prepare spatially selective surface platforms of organosilanes that are suitable for nanoscale studies of protein binding. Particle lithography was applied for patterning fibrinogen, a plasma protein that has a major role in the clotting cascade for blood coagulation and wound healing. Surface nanopatterns of mercaptosilanes were designed as sites for the attachment of fibrinogen within a protein-resistant matrix of 2-[methoxy(polyethyleneoxy)propyl] trichlorosilane (PEG-silane).
View Article and Find Full Text PDFMethanol solutions of cyclic and linear coil-crystalline diblock copolypeptoids [i.e., poly(N-methyl-glycine)--poly(N-decyl-glycine)] (5-10 wt %) have been shown to form free-standing gels consisting of entangled fibrils at the room temperature.
View Article and Find Full Text PDFThe self-polymerization of 4-chloromethylphenyltrichlorosilane (CMPS) was studied within spatially confined nanoholes on Si(111) using atomic force microscopy (AFM). Surface platforms of nanoholes were fabricated within a film of octadecyltrichlorosilane using immersion particle lithography. A heating step was developed to temporarily solder the silica mesospheres to the surface, to enable sustained immersion of mesoparticle masks in solvent solutions for the particle lithography protocol.
View Article and Find Full Text PDFThe immobilization of proteins on nanopatterned surfaces was investigated using in situ atomic force microscopy (AFM) and ex situ infrared reflectance-absorption spectroscopy (IRAS). The AFM-based lithography technique of nanografting provided control of the size, geometry, and spatial placement of nanopatterns within self-assembled monolayers (SAMs). Square nanopatterns of carboxylate-terminated SAMs were inscribed within methyl-terminated octadecanethiolate SAMs and activated using carbodiimide/succinimide coupling chemistry.
View Article and Find Full Text PDFDi-cationic Zn(II)-phthalocyanines (ZnPcs) are promising photosensitizers for the photodynamic therapy (PDT) of cancers and for photoinactivation of viruses and bacteria. Pegylation of photosensitizers in general enhances their water-solubility and tumor cell accumulation. A series of pegylated di-cationic ZnPcs were synthesized from conjugation of a low molecular weight PEG group to a pre-formed Pc macrocycle, or by mixed condensation involving a pegylated phthalonitrile.
View Article and Find Full Text PDFA series of soluble H-terminated conjugated oligomers incorporating 3,4-ethylenedioxythiophene (EDOT) combined with a small number of thiophene units and ranging in length from four to eight EDOT/thiophene groups was prepared with the ultimate goal to investigate if facile formation of a reactive trication radical species would enable electrochemical polymerization of such long-chain oligomers. Spectroscopic and electrochemical studies of the oligomers revealed some general dependencies of their electronic properties on the total number and position of EDOT groups. It was the number of consecutive EDOT units rather than total number of these units which was found to have the most profound effect on electronic energy gap and conjugation length.
View Article and Find Full Text PDF