Febrile neutropenia is a major complication of the treatment of patients with hematologic diseases. Recent epidemiologic changes, with an increase in infection caused by drug-resistant bacteria, represent a major challenge for the proper management of febrile neutropenia. The impact of these changes in the epidemiology of infection may vary according to the region.
View Article and Find Full Text PDFThe prominent role of electron-electron interactions in two-dimensional (2D) materials is at the origin of a great variety of fermionic correlated states reported in the literature. Artificial van der Waals heterostructures comprising single layers of highly correlated insulators allow one to explore the effect of the subtle interlayer interaction in the way electrons interact. We study the temperature dependence of the electronic properties of a van der Waals heterostructure composed of a single-layer Mott insulator lying on a metallic substrate by performing quasi-particle interference (QPI) maps.
View Article and Find Full Text PDFArsenic poses a global threat to living organisms, compromising crop security and yield. Limited understanding of the transcriptional network integrating arsenic-tolerance mechanisms with plant developmental responses hinders the development of strategies against this toxic metalloid. Here, we conducted a high-throughput yeast one-hybrid assay using as baits the promoter region from the arsenic-inducible genes ARQ1 and ASK18 from Arabidopsis thaliana, coupled with a transcriptomic analysis, to uncover novel transcriptional regulators of the arsenic response.
View Article and Find Full Text PDFThis study delves into the intriguing properties of the 1H/1T-TaS van der Waals heterostructure, focusing on the transparency of the 1H layer to the charge density wave of the underlying 1T layer. Despite the sizable interlayer separation and metallic nature of the 1H layer, positive bias voltages result in a pronounced superposition of the 1T charge density wave structure on the 1H layer. The conventional explanation relying on tunneling effects proves insufficient.
View Article and Find Full Text PDFMany cancer patients do not benefit from PD-L1/PD-1 blockade immunotherapies. PD-1 and LAG-3 co-upregulation in T-cells is one of the major mechanisms of resistance by establishing a highly dysfunctional state in T-cells. To identify shared features associated to PD-1/LAG-3 dysfunctionality in human cancers and T-cells, multiomic expression profiles were obtained for all TCGA cancers immune infiltrates.
View Article and Find Full Text PDFCurr Opin Infect Dis
August 2024
Purpose Of Review: Arbovirus infections are a challenge for immunocompromised hosts who travel to or live in endemic regions or who receive organs or tissues from donors who travel or live in such areas. This review addresses Dengue (DENV), Chikungunya (CHIKV), and Zika (ZIKV) infections in hematological patients, hematopoietic cell or solid organ transplant recipients, and people with HIV (PWH).
Recent Findings: Transmission is mainly due through Aedes mosquito bite.
The effects of stress during early vertebrate development can be especially harmful. Avoiding stressors in fish larvae is essential to ensure the health of adult fish and their reproductive performance and overall production. We examined the consequences of direct exposure to successive acute stressors during early development, including their effects on miR-29a and its targets, survival, hatching and malformation rates, larval behaviour and cartilage and eye development.
View Article and Find Full Text PDFMolecular functionalization of MoS has attracted a lot of attention due to its potential to afford fine-tuned hybrid materials that benefit from the power of synthetic chemistry and molecular design. Here, we report on the on-surface reaction of maleimides on bulk and molecular beam epitaxy grown single-layer MoS, both in ambient conditions as well as ultrahigh vacuum using scanning probe microscopy.
View Article and Find Full Text PDFBackground: Previous studies have shown that functional systemic immunity is required for the efficacy of PD-1/PD-L1 blockade immunotherapies in cancer. Hence, systemic reprogramming of immunosuppressive dysfunctional myeloid cells could overcome resistance to cancer immunotherapy.
Methods: Reprogramming of tumour-associated myeloid cells with oleuropein was studied by quantitative differential proteomics, phenotypic and functional assays in mice and lung cancer patients.
Kondo lattices are systems with unusual electronic properties that stem from strong electron correlation, typically studied in intermetallic 3D compounds containing lanthanides or actinides. Lowering the dimensionality of the system enhances the role of electron correlations providing a new tuning knob for the search of novel properties in strongly correlated quantum matter. The realization of a 2D Kondo lattice by stacking a single-layer Mott insulator on a metallic surface is reported.
View Article and Find Full Text PDFHematol Transfus Cell Ther
September 2023
Introduction: This study evaluated outcomes and risk factors for COVID-19 in 91 Brazilian multiple myeloma (MM) patients between April 2020 and January 2022.
Results: Of the 91 MM patients diagnosed with COVID-19, 64% had comorbidities and 66% required hospitalization due to COVID-19, with 44% needing ventilatory support and 37% intensive care. Age (OR 2.
Background And Objectives: Three different scores were addressed as predictors of outcomes in autologous stem cell transplant (Auto SCT): one was calculated by pretransplant characteristics (European Society for Blood and Marrow Transplantation [EBMT] risk score), and two were calculated at the onset of febrile neutropenia (Multinational Association for Supportive Care in Cancer [MASCC] and Quick Sequential Organ Failure Assessment [qSOFA]). We considered bloodstream infection (BSI), carbapenem prescription, admission to the intensive care unit (ICU), and mortality as outcomes.
Patients: A total of 309 patients with a median age of 54 years were enrolled.
Recent studies highlight the importance of baseline functional immunity for immune checkpoint blockade therapies. High-dimensional systemic immune profiling is performed in a cohort of non-small-cell lung cancer patients undergoing PD-L1/PD-1 blockade immunotherapy. Responders show high baseline myeloid phenotypic diversity in peripheral blood.
View Article and Find Full Text PDFMany studies have shown the capacity of soil humic substances (HS) to improve plant growth in natural ecosystems. This effect involves the activation of different processes within the plant at different coordinated molecular, biochemical, and physiological levels. However, the first event triggered by plant root-HS interaction remains unclear.
View Article and Find Full Text PDFPolymorphic phases and collective phenomena-such as charge density waves (CDWs)-in transition metal dichalcogenides (TMDs) dictate the physical and electronic properties of the material. Most TMDs naturally occur in a single given phase, but the fine-tuning of growth conditions via methods such as molecular beam epitaxy (MBE) allows to unlock otherwise inaccessible polymorphic structures. Exploring and understanding the morphological and electronic properties of new phases of TMDs is an essential step to enable their exploitation in technological applications.
View Article and Find Full Text PDFImmunotherapies based on immune checkpoint blockade have shown remarkable clinical outcomes and durable responses in patients with many tumor types. Nevertheless, these therapies lack efficacy in most cancer patients, even causing severe adverse events in a small subset of patients, such as inflammatory disorders and hyper-progressive disease. To diminish the risk of developing serious toxicities, intratumor delivery of monoclonal antibodies could be a solution.
View Article and Find Full Text PDFChimeric antigen receptor (CAR)-T adoptive cell therapy is one of the most promising advanced therapies for the treatment of cancer, with unprecedented outcomes in haematological malignancies. However, it still lacks efficacy in solid tumours, possibly because engineered T cells become inactive within the immunosuppressive tumour microenvironment (TME). In the TME, cells of the myeloid lineage (M) are among the immunosuppressive cell types with the highest tumour infiltration rate.
View Article and Find Full Text PDFPD-L1/PD-1 blockade immunotherapy has changed the therapeutic approaches for the treatment of many cancers. Nevertheless, the mechanisms underlying its efficacy or treatment failure are still unclear. Proficient systemic immunity seems to be a prerequisite for efficacy, as recently shown in patients and in mouse models.
View Article and Find Full Text PDFIn this work we fabricate and characterize a functionalized superconducting (SC) Nb tip of a scanning tunnelling microscope (STM). The tip is functionalized with a Tetracyanoquinodimethane molecule (TCNQ) that accepts charge from the tip and develops a magnetic moment. As a consequence, in scanning tunnelling spectroscopy (STS), sharp, bias symmetric sub-gap states identified as Yu-Shiba-Rusinov (YSR) bound states appear against the featureless density of states of a metallic graphene on Ir(111) sample.
View Article and Find Full Text PDFIt is unclear whether patients with cancer present inherently impaired responses to COVID-19 and vaccination due to their treatments, neoplastic diseases or both. To address this question, immune profiling was performed in three cohorts of healthy donors and oncologic patients: infected with SARS-CoV-2, BNT162b2-vaccinated, and with previous COVID-19 disease and subsequently vaccinated. Cancer patients showed good antibody responses to vaccination, but poor induction of T-cell responses towards the S protein when compared to infection.
View Article and Find Full Text PDFVaccination, being able to prevent millions of cases of infectious diseases around the world every year, is the most effective medical intervention ever introduced. However, immunosenescence makes vaccines less effective in providing protection to older people. Although most studies explain that this is mainly due to the immunosenescence of T and B cells, the immunosenescence of innate immunity can also be a significant contributing factor.
View Article and Find Full Text PDFThe number of people that are 65 years old or older has been increasing due to the improvement in medicine and public health. However, this trend is not accompanied by an increase in quality of life, and this population is vulnerable to most illnesses, especially to infectious diseases. Vaccination is the best strategy to prevent this fact, but older people present a less efficient response, as their immune system is weaker due mainly to a phenomenon known as immunosenescence.
View Article and Find Full Text PDFSingle-agent immunotherapy has been widely accepted as frontline treatment for advanced non-small cell lung cancer (NSCLC) with high tumor PD-L1 expression, but most patients do not respond and the mechanisms of resistance are not well known. Several works have highlighted the immunosuppressive activities of myeloid subpopulations, including low-density neutrophils (LDNs), although the context in which these cells play their role is not well defined. We prospectively monitored LDNs in peripheral blood from patients with NSCLC treated with anti-PD-1 immune checkpoint inhibitors (ICIs) as frontline therapy, in a cohort of patients treated with anti-PD1 immunotherapy combined with chemotherapy (CT+IT), and correlated values with outcomes.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) have revolutionized medical practice in oncology since the FDA approval of the first ICI 11 years ago. In light of this, Lymphocyte-Activation Gene 3 (LAG-3) is one of the most important next-generation immune checkpoint molecules, playing a similar role as Programmed cell Death protein 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4). 19 LAG-3 targeting molecules are being evaluated at 108 clinical trials which are demonstrating positive results, including promising bispecific molecules targeting LAG-3 simultaneously with other ICIs.
View Article and Find Full Text PDFEngineering the growth of the different phases of two-dimensional transition metal dichalcogenides (2D-TMDs) is a promising way to exploit their potential since the phase determines their physical and chemical properties. Here, we report on the epitaxial growth of monolayer MoTe on graphene on an Ir(111) substrate. Scanning tunneling microscopy and spectroscopy provide insights into the structural and electronic properties of the different polymorphic phases, which remain decoupled from the substrate due to the weak interaction with graphene.
View Article and Find Full Text PDF