Publications by authors named "Garima Shrivastava"

Introduction: High sustained anti-rhGAA antibody titers (HSAT; ≥12,800) are directly linked to reduced efficacy of enzyme replacement therapy (ERT) and subsequent clinical deterioration in infantile-onset Pompe disease (IOPD). We have previously demonstrated the safety and effectiveness of a bortezomib-based immune-tolerance induction (ITI) regimen (bortezomib, rituximab, methotrexate, and IVIG) in eliminating HSAT.

Methods: Here, we describe two IOPD cases (patients 6 and 8) who developed HSAT at 8 and 10 weeks on ERT despite transient low-dose methotrexate ITI administration in the ERT-naïve setting and were treated with a bortezomib-based ITI regimen, and we compare their courses to a series of six historical patients (patients 1-5, and 7) with a similar presentation who exemplify our evolving approach to treatment.

View Article and Find Full Text PDF

The mortality and morbidity rates for prostate cancer have recently increased to alarming levels, rising higher than lung cancer. Due to a lack of drug targets and molecular probes, existing theranostic techniques are limited. Human LIN28A and its paralog LIN28B overexpression are associated with a number of tumors resulting in a remarkable increase in cancer aggression and poor prognoses.

View Article and Find Full Text PDF

Diabetes epidemiological quantities are demonstrating one of the most important communities' health worries. The essential diabetic difficulties are including cardiomyopathy, nephropathy, inflammation, and retinopathy. Despite developments in glucose decreasing treatments and drugs, these diabetic complications are still ineffectively reversed or prohibited.

View Article and Find Full Text PDF

In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells.

View Article and Find Full Text PDF

Background: Nucleus targeted drug delivery provides several opportunities for the treatment of fatal diseases such as cancer. However, the complex nucleocytoplasmic barriers pose significant challenges for delivering a drug directly and efficiently into the nucleus. Aptamers representing singlestranded DNA and RNA qualify as next-generation highly advanced and personalized medicinal agents that successfully inhibit the expression of certain proteins; possess extraordinary gene-expression for manoeuvring the diseased cell's fate with negligible toxicity.

View Article and Find Full Text PDF

Hypoxia inducible factor (HIF)-prolyl hydroxylase (PHD) inhibitors are shown to be protective in several models of inflammatory bowel disease (IBD). However, these non-selective inhibitors are known to inhibit all the three isoforms of PHD, i.e.

View Article and Find Full Text PDF

An active targeting drug delivery system that targets the nucleus could solve the problem of the treatment of genetic disorders through gene delivery, but it has met with limited success. The purpose of this study was to establish an RNA aptamer-modified nucleus-targeting liposomal carrier system referred to as NupApt-liposomes. RNA aptamers against the Nup358 protein are prepared using a newly established Protein SELEX method.

View Article and Find Full Text PDF

Carbonic anhydrases (CA) or carbonate dehydratases are a family of enzymes that catalyze the rapid interconversion of carbon dioxide and water to bicarbonate. CA I is the most abundant protein in the cytosol and has been reported to the partially associated with a number of fatal diseases. A newly established Systematic Evolution of Ligands by EXponential enrichment (SELEX) method referred to as Protein-SELEX was used to select RNA aptamers against the human erythrocyte CA I (CA I) protein.

View Article and Find Full Text PDF