Publications by authors named "Garima Saraswat"

The vortex lattice in a Type II superconductor provides a versatile model system to investigate the order-disorder transition in a periodic medium in the presence of random pinning. Here, using scanning tunnelling spectroscopy in a weakly pinned Co(0.0075)NbSe(2) single crystal, we show that the vortex lattice in a 3-dimensional superconductor disorders through successive destruction of positional and orientational order, as the magnetic field is increased across the peak effect.

View Article and Find Full Text PDF

We report the construction and performance of a low temperature, high field scanning tunneling microscope (STM) operating down to 350 mK and in magnetic fields up to 9 T, with thin film deposition and in situ single crystal cleaving capabilities. The main focus lies on the simple design of STM head and a sample holder design that allows us to get spectroscopic data on superconducting thin films grown in situ on insulating substrates. Other design details on sample transport, sample preparation chamber, and vibration isolation schemes are also described.

View Article and Find Full Text PDF

We analyze the occurrence of the Berezinskii-Kosterlitz-Thouless (BKT) transition in thin films of NbN at various film thickness, by probing the effect of vortex fluctuations on the temperature dependence of the superfluid density below T(BKT) and of the resistivity above T(BKT). By direct comparison between the experimental data and the theory, we show the crucial role played by the vortex-core energy in determining the characteristic signatures of the BKT physics, and we estimate its dependence on the disorder level. Our work provides a paradigmatic example of BKT physics in a quasi-two-dimensional superconductor.

View Article and Find Full Text PDF

We explore the role of phase fluctuations in a three-dimensional s-wave superconductor, NbN, as we approach the critical disorder for destruction of the superconducting state. Close to critical disorder, we observe a finite gap in the electronic spectrum which persists at temperatures well above T(c). The superfluid density is strongly suppressed at low temperatures and evolves towards a linear-T variation at higher temperatures.

View Article and Find Full Text PDF