The phenomenon of cold scission or cold lability, which entails a widespread variety of oligomeric enzymes, is still enigmatic. The effect of cooling on the activity and the quaternary structure of the pyridoxal 5'-phosphate (PLP)-dependent enzyme, tryptophanase (Tnase), was studied utilizing single photon counting time-resolved spectrofluorometry. Upon cooling of holo-wild-type (wt) Tnase and its W330F mutant from 25 degrees C to 2 degrees C, a reduction in PLP fluorescence lifetime and rotational correlation time as well as inactivation and dissociation from tetramers to dimers were observed for both enzymes.
View Article and Find Full Text PDF