Publications by authors named "Gargaro M"

Dendritic cells (DCs) are essential orchestrators of immune responses and represent potential targets for immunomodulation in autoimmune diseases. Human amniotic fluid secretome is abundant in immunoregulatory factors, with extracellular vesicles (EVs) being a significant component. However, the impact of these EVs on dendritic cells subsets remain unexplored.

View Article and Find Full Text PDF

mutations are prevalent in various cancers, yet the complexity of apoptotic pathway deregulation suggests the involvement of additional factors. is known to extend the half-life of p53 under normal and stress conditions, implying a regulatory function. This study investigates, for the first time, the potential modulatory role of the ubiquitin-like-protein in p53-mutants.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple sclerosis is a serious disease where the immune system attacks the central nervous system, causing inflammation.
  • Scientists found that a substance made by gut bacteria, called indole-3-carboxaldehyde (3-IAld), seems to help with this disease by affecting how the body uses a chemical called tryptophan.
  • This process could protect the body and might even lead to new treatments for autoimmune diseases like multiple sclerosis.
View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase 2 (IDO2) is a paralog of Indoleamine 2,3-dioxygenase 1 (IDO1), a tryptophan-degrading enzyme producing immunomodulatory molecules. However, the two proteins are unlikely to carry out the same functions. IDO2 shows little or no tryptophan catabolic activity and exerts contrasting immunomodulatory roles in a context-dependent manner in cancer and autoimmune diseases.

View Article and Find Full Text PDF

Dendritic cells (DCs) have a significant role in coordinating both innate and adaptive immunity by serving as sentinels that detect invaders and initiate immune responses to eliminate them, as well as presenting antigens to activate adaptive immune responses that are specific to the antigen and the context in which it was detected. The regulation of DC functions is complex and involves intracellular drivers such as transcription factors and signaling pathways, as well as intercellular interactions with adhesion molecules, chemokines, and their receptors in the microenvironment. Toll-like receptors (TLRs) are crucial for DCs to detect pathogen-associated molecular patterns (PAMPs) and initiate downstream signaling pathways that lead to DC maturation and education in bridging with adaptive immunity, including the upregulation of MHC class II expression, induction of CD80, CD86, and CD40, and production of innate cytokines.

View Article and Find Full Text PDF

Climate change-related impacts have hampered the productivity of agricultural lands in recent times, affecting food security globally. Novel technology-based agricultural production systems such as controlled-environment agriculture (CEA) are a way to reduce the impact of climatic variation and pests that harm current global crop production and ensure consistent crop development. These systems often use artificial lighting and soilless mediums to produce crops.

View Article and Find Full Text PDF
Article Synopsis
  • - Src is a protein that helps regulate important cellular processes like growth and immune responses, particularly in dendritic cells where it activates IDO1, an immune-regulating protein.
  • - Spermidine has been found to give dendritic cells a tolerogenic state, which relies on IDO1 and Src's activity, and it directly binds to Src in a new location, acting as a positive modulator.
  • - This research reveals how spermidine enhances the interaction between Src and IDO1, suggesting potential for developing targeted drugs that can control Src's signaling pathways in the immune system.
View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase 1 (IDO1) is a tryptophan metabolizing enzyme chronically activated in many cancer patients and its expression and activity correlate with a poor prognosis. In fact, it acts as an immune regulator and contributes to tumor-induced immunosuppression by determining tryptophan deprivation and producing immunosuppressive metabolites named kynurenines. These findings made IDO1 an attractive target for cancer immunotherapy and small-molecule inhibitors, such as epacadostat, have been developed to block its enzymatic activity.

View Article and Find Full Text PDF

Background: Chronic systemic inflammation reduces the bioavailability of circulating endothelial progenitor cells (EPCs). Indoleamine 2,3-dioxygenase 1 (IDO1), a key enzyme of immune tolerance catalyzing the initial step of tryptophan degradation along the so-called l-kynurenine (l-kyn) pathway, that is induced by inflammatory stimuli and exerts anti-inflammatory effects. A specific relationship between IDO1 activity and circulating EPC numbers has not yet been investigated.

View Article and Find Full Text PDF

The environmental light/dark cycle has left its mark on the body's physiological functions to condition not only our inner biology, but also the interaction with external cues. In this scenario, the circadian regulation of the immune response has emerged as a critical factor in defining the host-pathogen interaction and the identification of the underlying circuitry represents a prerequisite for the development of circadian-based therapeutic strategies. The possibility to track down the circadian regulation of the immune response to a metabolic pathway would represent a unique opportunity in this direction.

View Article and Find Full Text PDF
Article Synopsis
  • Human amniotic fluid extracellular vesicles (HAF-EVs) from pregnant women show anti-inflammatory effects on T cells and monocytes, but their specific functions are not fully understood.
  • * The study aimed to explore how HAF-EVs impact inflammasome activation in human monocytes, finding that these vesicles contain immunoregulatory molecules and small amounts of endotoxin, potentially linked to specific bacterial strains.
  • * Results indicate that HAF-EVs can activate inflammasomes in THP-1 cells, but subsequent treatments can inhibit this activation, suggesting HAF-EVs may play a role in immune regulation during early pregnancy.
View Article and Find Full Text PDF

Indoleamine 2,3 dioxygenase 1 (IDO1), a leader tryptophan-degrading enzyme, represents a recognized immune checkpoint molecule. In neoplasia, IDO1 is often highly expressed in dendritic cells infiltrating the tumor and/or in tumor cells themselves, particularly in human melanoma. In dendritic cells, IDO1 does not merely metabolize tryptophan into kynurenine but, after phosphorylation of critical tyrosine residues in the non-catalytic small domain, it triggers a signaling pathway prolonging its immunoregulatory effects by a feed-forward mechanism.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are small spherical particles surrounded by a membrane with an unusual lipid composition and a striking cholesterol/phospholipidic ratio. About 2000 lipid and 3500 protein species were identified in EVs secreted by different cell sources. EVs mediate cell to cell communication in proximity to or distant from the cell of origin.

View Article and Find Full Text PDF

Introduction: Insulin-like growth factor 2 (IGF2) mRNA has been found in human and mouse spermatozoa. It is currently unknown whether the IGF2 protein is expressed in human spermatozoa and, if so, its possible role in the cross-talk between germ and Sertoli cells (SCs) during spermatogenesis.

Methods: To accomplish this, we analyzed sperm samples from four consecutive Caucasian men.

View Article and Find Full Text PDF

In chronic lymphocytic leukaemia (CLL) the efficacy of SARS-CoV-2 vaccination remains unclear as most studies have focused on humoral responses. Here we comprehensively examined humoral and cellular responses to vaccine in CLL patients. Seroconversion was observed in 55.

View Article and Find Full Text PDF

BACKGROUND: Mucopolysaccharidosis type VI (MPS VI) is an inherited multisystem lysosomal disorder due to arylsulfatase B (ARSB) deficiency that leads to widespread accumulation of glycosaminoglycans (GAG), which are excreted in increased amounts in urine. MPS VI is characterized by progressive dysostosis multiplex, connective tissue and cardiac involvement, and hepatosplenomegaly. Enzyme replacement therapy (ERT) is available but requires life-long and costly intravenous infusions; moreover, it has limited efficacy on diseased skeleton and cardiac valves, compromised pulmonary function, and corneal opacities.

View Article and Find Full Text PDF

Conventional dendritic cells (cDCs), cDC1 and cDC2, act both to initiate immunity and maintain self-tolerance. The tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is used by cDCs in maintaining tolerance, but its role in different subsets remains unclear. At homeostasis, only mature CCR7 cDC1 expressed IDO1 that was dependent on IRF8.

View Article and Find Full Text PDF

Liver gene therapy with adeno-associated viral (AAV) vectors is under clinical investigation for haemophilia A (HemA), the most common inherited X-linked bleeding disorder. Major limitations are the large size of the F8 transgene, which makes packaging in a single AAV vector a challenge, as well as the development of circulating anti-F8 antibodies which neutralise F8 activity. Taking advantage of split-intein-mediated protein trans-splicing, we divided the coding sequence of the large and highly secreted F8-N6 variant in two separate AAV-intein vectors whose co-administration to HemA mice results in the expression of therapeutic levels of F8 over time.

View Article and Find Full Text PDF

Background: Despite the great success, the therapeutic benefits of immune checkpoint inhibitors (ICIs) in cancer immunotherapy are limited by either various resistance mechanisms or ICI-associated toxic effects including gastrointestinal toxicity. Thus, novel therapeutic strategies that provide manageable side effects to existing ICIs would enhance and expand their therapeutic efficacy and application. Due to its proven role in cancer development and immune regulation, gut microbiome has gained increasing expectation as a potential armamentarium to optimize immunotherapy with ICI.

View Article and Find Full Text PDF

An immunoregulatory role of stem cells, often mediated by their secretome, has been claimed by several studies. Stem cell-derived extracellular vesicles (EVs) are crucial components of the secretome. EVs, a heterogeneous group of membranous vesicles released by many cell types into the extracellular space, are now considered as an additional mechanism for intercellular communication.

View Article and Find Full Text PDF

Autophagy selectively degrades aggregation-prone misfolded proteins caused by defective cellular proteostasis. However, the complexity of autophagy may prevent the full appreciation of how its modulation could be used as a therapeutic strategy in disease management. Here, we define a molecular pathway through which recombinant IL-1 receptor antagonist (IL-1Ra, anakinra) affects cellular proteostasis independently from the IL-1 receptor (IL-1R1).

View Article and Find Full Text PDF

Objectives: Although hypovitaminosis D appears to be highly prevalent in patients with coronavirus disease 2019 (COVID-19), its impact on their prognosis remains unclear.

Methods: In this study, serum 25-hydroxyvitamin D (Vit-D) level was measured in 200 patients hospitalized with COVID-19. The association between Vit-D and the composite endpoint of intensive care unit (ICU) admission/in-hospital death was explored using univariable and multivariable analyses.

View Article and Find Full Text PDF

Tryptophan catabolism is a major metabolic pathway utilized by several professional and non-professional antigen presenting cells to maintain immunological tolerance. Here we report that 3-hydroxy-L-kynurenamine (3-HKA) is a biogenic amine produced via an alternative pathway of tryptophan metabolism. In vitro, 3-HKA has an anti-inflammatory profile by inhibiting the IFN-γ mediated STAT1/NF-κΒ pathway in both mouse and human dendritic cells (DCs) with a consequent decrease in the release of pro-inflammatory chemokines and cytokines, most notably TNF, IL-6, and IL12p70.

View Article and Find Full Text PDF

HOPS is a ubiquitin-like protein implicated in many aspects of cellular function including the regulation of mitotic activity, proliferation, and cellular stress responses. In this study, we focused on the complex relationship between HOPS and the tumor suppressor p53, investigating both transcriptional and non-transcriptional p53 responses. Here, we demonstrated that heterozygous mice and mouse embryonic fibroblasts exhibit an impaired DNA-damage response to etoposide-induced double-strand breaks when compared to wild-type genes.

View Article and Find Full Text PDF