Environ Sci Process Impacts
January 2025
Alum shale formations in Scandinavia are generally enriched in uranium (U) and, when exposed to air and water, may produce acidic rock drainage (ARD), releasing potentially harmful elements into the environment. Taraldrud is a legacy site in southeast Norway where approx. 51 000 m of alum shale was deposited in the 1980s-1990s.
View Article and Find Full Text PDFUnderstanding radioactive Cs contamination has been a central issue at Fukushima Daiichi and other nuclear legacy sites; however, atomic-scale characterization of radioactive Cs in environmental samples has never been achieved. Here we report, for the first time, the direct imaging of radioactive Cs atoms using high-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In Cs-rich microparticles collected from Japan, we document inclusions that contain 27 - 36 wt% of Cs (reported as CsO) in a zeolite: pollucite.
View Article and Find Full Text PDFRadioactive particles often contain very high radioactivity concentrations and are widespread. They pose a potential risk to human health and the environment. Their detection, quantification, and characterization are crucial if we are to understand their impact.
View Article and Find Full Text PDFThe deep terrestrial subsurface (DTS) harbours a striking diversity of microorganisms. However, systematic research on microbial metabolism, and how varying groundwater composition affects the bacterial communities and metabolites in these environments is lacking. In this study, DTS groundwater bacterial consortia from two Fennoscandian Shield sites were enriched and studied.
View Article and Find Full Text PDFCesium-134 and -137 are prevalent, long-lived, radio-toxic contaminants released into the environment during nuclear accidents. Large quantities of insoluble, respirable Cs-bearing microparticles (CsMPs) were released into the environment during the Fukushima Daiichi nuclear accident. Monitoring for CsMPs in environmental samples is essential to understand the impact of nuclear accidents.
View Article and Find Full Text PDFRadioactive Cs-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) are a potential health risk through inhalation. Little has been documented on the occurrence of CsMPs, particularly their occurrence inside buildings. In this study, we quantitatively analyze the distribution and number of CsMPs in indoor dust samples collected from an elementary school located 2.
View Article and Find Full Text PDFUranium dioxide (UO) and metaschoepite (UO•nHO) particles have been identified as contaminants at nuclear sites. Understanding their behavior and impact is crucial for safe management of radioactively contaminated land and to fully understand U biogeochemistry. The Savannah River Site (SRS) (South Carolina, USA), is one such contaminated site, following historical releases of U-containing wastes to the vadose zone.
View Article and Find Full Text PDFSelenium (Se) is a toxic contaminant with multiple anthropogenic sources, including Se from nuclear fission. Se mobility in the geosphere is generally governed by its oxidation state, therefore understanding Se speciation under variable redox conditions is important for the safe management of Se contaminated sites. Here, we investigate Se behavior in sediment groundwater column systems.
View Article and Find Full Text PDFBoron carbide control rods remain in the fuel debris of the damaged reactors in the Fukushima Daiichi Nuclear Power Plant, potentially preventing re-criticality; however, the state and stability of the control rods remain unknown. Sensitive high-resolution ion microprobe analyses have revealed B-Li isotopic signatures in radioactive Cs-rich microparticles (CsMPs) that formed by volatilization and condensation of Si-oxides during the meltdowns. The CsMPs contain 1518-6733 mg kg of B and 11.
View Article and Find Full Text PDFTc will be present in significant quantities in radioactive wastes including intermediate-level waste (ILW). The internationally favored concept for disposing of higher activity radioactive wastes including ILW is via deep geological disposal in an underground engineered facility located ∼200-1000 m deep. Typically, in the deep geological disposal environment, the subsurface will be saturated, cement will be used extensively as an engineering material, and iron will be ubiquitous.
View Article and Find Full Text PDFA contaminated zone elongated toward Futaba Town, north-northwest of the Fukushima Daiichi Nuclear Power Plant (FDNPP), contains highly radioactive particles released from reactor Unit 1. There are uncertainties associated with the physio-chemical properties and environmental impacts of these particles. In this study, 31 radioactive particles were isolated from surface soils collected 3.
View Article and Find Full Text PDFUnderstanding the speciation and fate of radium during operational discharge from the offshore oil and gas industry into the marine environment is important in assessing its long term environmental impact. In the current work, Ra concentrations in marine sediments contaminated by produced water discharge from a site in the UK were analysed using gamma spectroscopy. Radium was present in field samples (0.
View Article and Find Full Text PDFUnderstanding the long-term fate, stability, and bioavailability of uranium (U) in the environment is important for the management of nuclear legacy sites and radioactive wastes. Analysis of U behavior at natural analogue sites permits evaluation of U biogeochemistry under conditions more representative of long-term equilibrium. Here, we have used bulk geochemical and microbial community analysis of soils, coupled with X-ray absorption spectroscopy and μ-focus X-ray fluorescence mapping, to gain a mechanistic understanding of the fate of U transported into an organic-rich soil from a pitchblende vein at the UK Needle's Eye Natural Analogue site.
View Article and Find Full Text PDFTraces of Pu have been detected in material released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March of 2011; however, to date the physical and chemical form of the Pu have remained unknown. Here we report the discovery of particulate Pu associated with cesium-rich microparticles (CsMPs) that formed in and were released from the reactors during the FDNPP meltdowns. The Cs-pollucite-based CsMP contained discrete U(IV)O nanoparticles, <~10 nm, one of which is enriched in Pu adjacent to fragments of Zr-cladding.
View Article and Find Full Text PDFUnderstanding anthropogenic radionuclide biogeochemistry and mobility in natural systems is key to improving the management of radioactively contaminated environments and radioactive wastes. Here, we describe the contemporary depth distribution and phase partitioning of Cs, Pu, and Am in two sediment cores taken from the Irish Sea (Site 1: the Irish Sea Mudpatch; Site 2: the Esk Estuary). Both sites are located ~10 km from the Sellafield nuclear site.
View Article and Find Full Text PDFACS Earth Space Chem
November 2019
Understanding interactions between iron (oxyhydr)oxide nanoparticles and plutonium is essential to underpin technology to treat radioactive effluents, in cleanup of land contaminated with radionuclides, and to ensure the safe disposal of radioactive wastes. These interactions include a range of adsorption, precipitation, and incorporation processes. Here, we explore the mechanisms of plutonium sequestration during ferrihydrite precipitation from an acidic solution.
View Article and Find Full Text PDFThe Collaborative Materials Exercise (CMX) is organized by the Nuclear Forensics International Technical Working Group, with the aim of advancing the analytical capabilities of the participating organizations and providing feedback on the best approaches to a nuclear forensic investigation. Here, model nuclear fuel materials from the 5 CMX iteration were analyzed using a NanoSIMS 50L (CAMECA) in order to examine inhomogeneities in the U/U ratio and trace element abundance within individual, micrometer scale particles. Two fuel pellets were manufactured for the exercise and labelled CMX-5A and CMX-5B.
View Article and Find Full Text PDFThe abundance and distribution of highly radioactive cesium-rich microparticles (CsMPs) that were released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) during the first stage of the nuclear disaster in March 2011 are described for 20 surface soils collected around the FDNPP. Based on the spatial distribution of the numbers (particles/g) and radioactive fraction (RF) of the CsMPs in surface soil, which is defined as the sum of the CsMP radioactivity (in Bq) divided by the total radioactivity (in Bq) of the soil sample, three regions of particular interest have been identified: i.) near-northwest (N-NW), ii.
View Article and Find Full Text PDFStainless steels can become contaminated with radionuclides at nuclear sites. Their disposal as radioactive waste would be costly. If the nature of steel contamination could be understood, effective decontamination strategies could be designed and implemented during nuclear site decommissioning in an effort to release the steels from regulatory control.
View Article and Find Full Text PDFMetaschoepite is commonly found in U-contaminated environments and metaschoepite-bearing wastes may be managed via shallow or deep disposal. Understanding metaschoepite dissolution and tracking the fate of any liberated U is thus important. Here, discrete horizons of metaschoepite (UO·HO) particles were emplaced in flowing sediment/groundwater columns representative of the UK Sellafield Ltd.
View Article and Find Full Text PDFTo understand the chemical durability of highly radioactive cesium-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant in March 2011, we have, for the first time, performed systematic dissolution experiments with CsMPs isolated from Fukushima soils (one sample with 108 Bq and one sample with 57.8 Bq of Cs) using three types of solutions: simulated lung fluid, ultrapure water, and artificial sea water, at 25 and 37 °C for 1-63 days. The Cs was released rapidly within three days and then steady-state dissolution was achieved for each solution type.
View Article and Find Full Text PDFStand-off, in-situ, laser induced breakdown spectroscopy (LIBS) offers a rapid, safe, and cost-effective method for discrimination of radioactive waste materials arising during the operation of nuclear plants and from decommissioning activities. Characterisation of waste materials is a critical activity in understanding the nature of the waste, ensuring hazardous material is managed safely and that waste can be segregated for reuse, recycle or sentenced for appropriate disposal. Characterisation of materials, often in hostile environments, requires the ability to remotely differentiate between materials in terms of their chemical composition and radioactivity.
View Article and Find Full Text PDFDespite the fact that non-aqueous uranium chemistry is over 60 years old, most polarised-covalent uranium-element multiple bonds involve formal uranium oxidation states IV, V, and VI. The paucity of uranium(III) congeners is because, in common with metal-ligand multiple bonding generally, such linkages involve strongly donating, charge-loaded ligands that bind best to electron-poor metals and inherently promote disproportionation of uranium(III). Here, we report the synthesis of hexauranium-methanediide nanometre-scale rings.
View Article and Find Full Text PDFHighly radioactive cesium-rich microparticles (CsMPs) were released from the Fukushima Daiichi nuclear power plant (FDNPP) to the surrounding environment at an early stage of the nuclear disaster in March of 2011; however, the quantity of released CsMPs remains undetermined. Here, we report a novel method to quantify the number of CsMPs in surface soils at or around Fukushima and the fraction of radioactivity they contribute, which we call "quantification of CsMPs" (QCP) and is based on autoradiography. Here, photostimulated luminescence (PSL) is linearly correlated to the radioactivity of various microparticles, with a regression coefficient of 0.
View Article and Find Full Text PDF