Publications by authors named "Gareth P Elvidge"

The effects of hypoxia on gene transcription are mainly mediated by a transcription factor complex termed hypoxia-inducible factor (HIF). Genetic manipulation of animals and studies of humans with rare hereditary disease have shown that modifying the HIF pathway affects systems-level physiological responses to hypoxia. It is, however, an open question whether variations in systems-level responses to hypoxia between individuals could arise from variations within the HIF system.

View Article and Find Full Text PDF

The beginning of this millennium has seen dramatic advances in genomic research. Milestones such as the complete sequencing of the human genome and of many other species were achieved and complemented by the systematic discovery of variation at the single nucleotide (SNP) and whole segment (copy number polymorphism) level. Currently most genomics research efforts are concentrated on the production of whole genome functional annotations, as well as on mapping the epigenome by identifying the methylation status of CpGs, mainly in CpG islands, in different tissues.

View Article and Find Full Text PDF

Studies of gene regulation by oxygen have revealed novel signal pathways that regulate the hypoxia-inducible factor (HIF) transcriptional system through post-translational hydroxylation of specific prolyl and asparaginyl residues in HIF-alpha subunits. These oxygen-sensitive modifications are catalyzed by members of the 2-oxoglutarate (2-OG) dioxygenase family (PHD1, PHD2, PHD3, and FIH-1), raising an important question regarding the extent of involvement of these and other enzymes of the same family in directing the global changes in gene expression that are induced by hypoxia. To address this, we compared patterns of gene expression induced by hypoxia and by a nonspecific 2-OG-dependent dioxygenase inhibitor, dimethyloxalylglycine (DMOG), among a set of 22,000 transcripts, by microarray analysis of MCF7 cells.

View Article and Find Full Text PDF

Real competitive PCR (rcPCR) has been shown to have high sensitivity, reproducibility, and high-throughput potential. We describe further development and evaluation of this methodology as a tool for measuring nucleic acid abundance within a cell. Modifications to the original protocol allow analysis of gene expression levels using standard conditions regardless of mRNA abundance and assay type, thereby increasing throughput and ease of reaction setup while decreasing optimization time.

View Article and Find Full Text PDF

Objectives: In the search for chromosome 12 genes potentially involved in the pathogenesis of bipolar disorder we will screen Phenylalanine hydroxylase and human LIM-homeobox LHX5 genes for sequence variants, both of which have been suggested as candidate genes. The genes lie on chromosome 12q23-24, near the Darier's disease gene, ATP2A2. We have previously reported two families in which the pattern of segregation of illness is consistent with genetic linkage between this chromosomal region and a putative highly penetrant autosomal dominant major affective disorder locus (pedigree 324, maximum LOD=2.

View Article and Find Full Text PDF