Publications by authors named "Gareth Le Page"

Regulatory environmental risk assessment, applied to establish a protection limit for all bacterial diversity in surface waters, relies on a growth inhibition test performed on a single species of cyanobacteria and the activated sludge respiration inhibition test. Recently, the ability of this approach to protect adequately for bacteria that provide important ecosystem services has been questioned, and empirical data on additional species to further investigate the effectiveness of the environmental risk assessment are urgently required. We present the development and validation of a cost-effective and time-efficient microplate assay that is comparable to the traditional shake flask test for measurement of cyanobacteria growth rate after chemical exposure.

View Article and Find Full Text PDF

Once released into the environment antibiotics can kill or inhibit the growth of bacteria, and in turn potentially have effects on bacterial community structure and ecosystem function. Environmental risk assessment (ERA) seeks to establish protection limits to minimise chemical impacts on the environment, but recent evidence suggests that the current regulatory approaches for ERA for antibiotics may not be adequate for protecting bacteria that have fundamental roles in ecosystem function. In this study we assess the differences in interspecies sensitivity of eight species of cyanobacteria to seven antibiotics (cefazolin, cefotaxime, ampicillin, sufamethazine, sulfadiazine, azithromycin and erythromycin) with three different modes of action.

View Article and Find Full Text PDF

Antibiotics are vital in the treatment of bacterial infectious diseases but when released into the environment they may impact non-target organisms that perform vital ecosystem services and enhance antimicrobial resistance development with significant consequences for human health. We evaluate whether the current environmental risk assessment regulatory guidance is protective of antibiotic impacts on the environment, protective of antimicrobial resistance, and propose science-based protection goals for antibiotic manufacturing discharges. A review and meta-analysis was conducted of aquatic ecotoxicity data for antibiotics and for minimum selective concentration data derived from clinically relevant bacteria.

View Article and Find Full Text PDF

Mollusks are known to be uniquely sensitive to a number of reproductive toxicants including some vertebrate endocrine disrupting chemicals. However, they have widely been ignored in environmental risk assessment procedures for chemicals. This study describes the validation of the Potamopyrgus antipodarum reproduction test within the OECD Conceptual Framework for Endocrine Disrupters Testing and Assessment.

View Article and Find Full Text PDF

The OECD test guideline development program has been extended in 2011 to establish a partial life-cycle protocol for assessing the reproductive toxicity of chemicals to several mollusk species, including the great pond snail Lymnaea stagnalis. In this paper, we summarize the standard draft protocol for a reproduction test with this species, and present inter-comparison results obtained in a 56-day prevalidation ring-test using this protocol. Seven European laboratories performed semi-static tests with cultured snails of the strain Renilys® exposed to nominal concentrations of cadmium chloride (from 53 to 608μgCdL(-1)).

View Article and Find Full Text PDF

Inbreeding depression is expected to be more severe in stressful environments. However, the extent to which inbreeding affects the vulnerability of populations to environmental stressors, such as chemical exposure, remains unresolved. Here we report on the combined impacts of inbreeding and exposure to an endocrine disrupting chemical (the fungicide clotrimazole) on zebrafish (Danio rerio).

View Article and Find Full Text PDF

Potamopyrgus antipodarum is a candidate for a standardized mollusk partial life-cycle study. This is a comparative study of two test designs (microplate and beaker), with additional endpoints to the proposed guideline methods, for example, tracking of continuous reproductive output over 28 d and attributing it to individual female snails. In addition, an investigation of the effects of temperature (16, 20, and 25°C) on reproduction was also conducted employing the microplate design.

View Article and Find Full Text PDF

Laboratory animals tend to be more inbred and less genetically diverse than wild populations, and thus may differ in their susceptibility to chemical stressors. We tested this hypothesis by comparing the responses of related inbred (theoretical inbreeding F(IT) = n + 0.25) and outbred (F(IT) = n) zebrafish (Danio rerio) WIK/Wild family lines to an endocrine disrupting chemical, clotrimazole.

View Article and Find Full Text PDF

Exposure to environmental chemicals can have negative consequences for wildlife and even cause localized population extinctions. Resistance to chemical stress, however, can evolve and the mechanisms include desensitized target sites, reduced chemical uptake and increased metabolic detoxification and sequestration. Chemical resistance in wildlife populations can also arise independently of exposure and may be spread by gene flow between populations.

View Article and Find Full Text PDF