Publications by authors named "Gareth Kennedy"

A flight trial was conducted to determine whether breathing 60% oxygen during high performance flight maneuvers using contemporary pilot flight equipment induces atelectasis and to explore whether cabin altitude had any influence on the extent of atelectasis identified. On 2 separate days, 14 male aircrew flew as passengers at High [14,500-18,000 ft (4420-5486 m)] and Low [4000-6000 ft (1219-1829 m)] cabin pressure altitude in a Hawk T Mk1 aircraft breathing 60% oxygen. Sorties comprised 16 maneuvers at +5 G, each sustained for 30 s.

View Article and Find Full Text PDF

The use of deep neural networks (DNNs) for the classification of electrochemical mechanisms using simulated voltammograms with one cycle of potential for training has previously been reported. In this paper, it is shown how valuable additional patterns for mechanism distinction become available when a new DNN is trained simultaneously on images obtained from three cycles of potential using tensor inputs. Significant improvements, relative to the single cycle training, in achieving the correct classification of E, EC and EC mechanisms (E = electron transfer step and C and C are first and second order follow up chemical reactions, respectively) are demonstrated with noisy simulated data for conditions where all mechanisms are close to chemically reversible and hence difficult to distinguish, even by an experienced electrochemist.

View Article and Find Full Text PDF

Advanced data analysis tools such as mathematical optimisation, Bayesian inference and machine learning have the capability to revolutionise the field of quantitative voltammetry. Nowadays such approaches can be implemented routinely with widely available, user-friendly modern computing languages, algorithms and high speed computing to provide accurate and robust methods for quantitative comparison of experimental data with extensive simulated data sets derived from models proposed to describe complex electrochemical reactions. While the methodology is generic to all forms of dynamic electrochemistry, including the widely used direct current cyclic voltammetry, this review highlights advances achievable in the parameterisation of large amplitude alternating current voltammetry.

View Article and Find Full Text PDF

At present, electrochemical mechanisms are most commonly identified subjectively based on the experience of the researcher. This subjectivity is reflected in bias to particular mechanisms as well as lack of quantifiable confidence in the chosen mechanism compared to potential alternative mechanisms. In this paper we demonstrate that a deep neural network trained to recognize dc cyclic voltammograms for three commonly encountered mechanisms provides correct classifications within 5 ms without the problem of subjectivity.

View Article and Find Full Text PDF

Estimation of parameters of interest in dynamic electrochemical (voltammetric) studies is usually undertaken via heuristic or data optimization comparison of the experimental results with theory based on a model chosen to mimic the experiment. Typically, only single point parameter values are obtained via either of these strategies without error estimates. In this article, Bayesian inference is introduced to Fourier-transformed alternating current voltammetry (FTACV) data analysis to distinguish electrode kinetic mechanisms (reversible or quasi-reversible, Butler-Volmer or Marcus-Hush models) and quantify the errors.

View Article and Find Full Text PDF

The potential-dependences of the rate constants associated with heterogeneous electron transfer predicted by the empirically based Butler-Volmer and fundamentally based Marcus-Hush formalisms are well documented for dc cyclic voltammetry. However, differences are often subtle, so, presumably on the basis of simplicity, the Butler-Volmer method is generally employed in theoretical-experimental comparisons. In this study, the ability of Large Amplitude Fourier Transform AC Cyclic Voltammetry to distinguish the difference in behaviour predicted by the two formalisms has been investigated.

View Article and Find Full Text PDF

A detailed analysis of the cooperative two-electron transfer of surface-confined cytochrome c peroxidase (CcP) in contact with pH 6.0 phosphate buffer solution has been undertaken. This investigation is prompted by the prospect of achieving a richer understanding of this biologically important system via the employment of kinetically sensitive, but background devoid, higher harmonic components available in the large-amplitude Fourier transform ac voltammetric method.

View Article and Find Full Text PDF

The theory for large amplitude Fourier transformed ac voltammetry at a rotating disc electrode is described. Resolution of time domain data into dc and ac harmonic components reveals that the mass transport for the dc component is controlled by convective-diffusion, while the background free higher order harmonic components are flow rate insensitive and mainly governed by linear diffusion. Thus, remarkable versatility is available; Levich behaviour of the dc component limiting current provides diffusion coefficient values and access to higher harmonics allows fast electrode kinetics to be probed.

View Article and Find Full Text PDF

As in many scientific disciplines, modern chemistry involves a mix of experimentation and computer-supported theory. Historically, these skills have been provided by different groups, and range from traditional 'wet' laboratory science to advanced numerical simulation. Increasingly, progress is made by global collaborations, in which new theory may be developed in one part of the world and applied and tested in the laboratory elsewhere.

View Article and Find Full Text PDF

Large-amplitude ac voltammograms contain a wealth of kinetic information concerning electrode processes and can provide unique mechanistic insights compared to other techniques. This paper describes the effects homogeneous chemical processes have on ac voltammetry in general and provides experimental examples using two well-known chemical systems: one simple and one complex. Oxidation of [Cp*Fe(CO)(2)](2) (Cp* = η(5)-pentamethylcyclopentadienyl) in noncoordinating media is a reversible one-electron process; in the presence of nucleophiles, however, the resulting ligand-induced disproportionation changes the process to a multiple step regeneration.

View Article and Find Full Text PDF

Unexpected nonadditivity of currents encountered in the electrochemistry of mixtures of ferrocene (Fc) and cobaltocenium cation (Cc(+)) as the PF(6)(-) salt has been investigated by direct current (dc) and Fourier-transformed alternating current (ac) cyclic voltammetry in two aprotic (1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate) and three protic (triethylammonium formate, bis(2-hydroxyethyl)ammonium acetate, and triethylammonium acetate) ionic liquids (ILs). The voltammetry of the individual Fc(0/+) and Cc(+/0) couples always exhibits near-Nernstian behavior at glassy carbon and gold electrodes. As expected for an ideal process, the reversible formal potentials and diffusion coefficients at 23 +/- 1 degrees C in each IL determined from measurement on individual Fc and Cc(+) solutions were found to be independent of electrode material, concentration, and technique used for the measurement.

View Article and Find Full Text PDF

We present a method of parallelizing flat histogram Monte Carlo simulations, which give the free energy of a molecular system as an output. In the serial version, a constant probability distribution, as a function of any system parameter, is calculated by updating an external potential that is added to the system Hamiltonian. This external potential is related to the free energy.

View Article and Find Full Text PDF