Publications by authors named "Gareth H McKinley"

Extensional flows of complex fluids play an important role in many industrial applications, such as spraying and atomisation, as well as microfluidic-based drop deposition. The dripping-on-substrate (DoS) technique is a conceptually-simple, but dynamically-complex, probe of the extensional rheology of low-viscosity, non-Newtonian fluids. It incorporates the capillary-driven thinning of a liquid bridge, produced by a single drop as it is slowly dispensed from a syringe pump onto a solid partially-wetting substrate.

View Article and Find Full Text PDF

We study the local dynamics of a thixotropic yield stress fluid that shows a pronounced non-monotonic flow curve. This mechanically unstable behavior is generally not observable from standard rheometry tests, resulting in a stress plateau that stems from the coexistence of a flowing band with an unyielded region below a critical shear rate . Combining ultrasound velocimetry with standard rheometry, we discover an original shear-banding scenario in the decreasing branch of the flow curve of model paraffin gels, in which the velocity profile of the flowing band is set by the applied shear rate instead of .

View Article and Find Full Text PDF

Aluminosilicate hydrogels are often considered to be precursors for the crystallisation of zeolites carried out under hydrothermal conditions. The preparation of mechanically homogeneous aluminosilicate gels enables the study of these materials through bulk rheology and observation of the aging dynamics until the precipitation of crystalline zeolites. The first part of this study deals with the establishment of ternary state diagrams, in order to identify the range of chemical formulations that enable preparation of single-phase homogeneous gels.

View Article and Find Full Text PDF

Gels made of telechelic polymers connected by reversible cross-linkers are a versatile design platform for biocompatible viscoelastic materials. Their linear response to a step strain displays a fast, near-exponential relaxation when using low-valence cross-linkers, while larger supramolecular cross-linkers bring about much slower dynamics involving a wide distribution of timescales whose physical origin is still debated. Here, we propose a model where the relaxation of polymer gels in the dilute regime originates from elementary events in which the bonds connecting two neighboring cross-linkers all disconnect.

View Article and Find Full Text PDF

The design of soft magnetic hydrogels with high concentrations of magnetic particles is complicated by weak retention of the iron oxide particles in the hydrogel scaffold. Here, we propose a design strategy that circumvents this problem through the mineralization of iron oxide nanoparticles within polymer hydrogels functionalized with strongly iron-coordinating nitrocatechol groups. The mineralization process facilitates the synthesis of a high concentration of large iron oxide nanoparticles (up to 57 wt % dry mass per single cycle) in a simple one-step process under ambient conditions.

View Article and Find Full Text PDF

Viscoelastic stress relaxation is a basic characteristic of soft matter systems such as colloids, gels, and biological networks. Although the Maxwell model of linear viscoelasticity provides a classical description of stress relaxation, it is often not sufficient for capturing the complex relaxation dynamics of soft matter. In this Tutorial, we introduce and discuss the physics of non-Maxwellian linear stress relaxation as observed in soft materials, the ascribed origins of this effect in different systems, and appropriate models that can be used to capture this relaxation behavior.

View Article and Find Full Text PDF

Addition of particles to a viscoelastic suspension dramatically alters the properties of the mixture, particularly when it is sheared or otherwise processed. Shear-induced stretching of the polymers results in elastic stress that causes a substantial increase in measured viscosity with increasing shear, and an attractive interaction between particles, leading to their chaining. At even higher shear rates, the flow becomes unstable, even in the absence of particles.

View Article and Find Full Text PDF

Clay slurries are both ubiquitous and essential in the oil exploration industry, and are most commonly employed as drilling fluids. Due to its natural abundance, bentonite clay is often the choice for these materials. Understanding and predicting the mechanical response of these fluids is critical for safe and efficient drilling operations.

View Article and Find Full Text PDF

The formulation of rheological constitutive equations-models that relate internal stresses and deformations in complex fluids-is a critical step in the engineering of systems involving soft materials. While data-driven models provide accessible alternatives to expensive first-principles models and less accurate empirical models in many engineering disciplines, the development of similar models for complex fluids has lagged. The diversity of techniques for characterizing non-Newtonian fluid dynamics creates a challenge for classical machine learning approaches, which require uniformly structured training data.

View Article and Find Full Text PDF

The rod-climbing or "Weissenberg" effect in which the free surface of a complex fluid climbs a thin rotating rod is a popular and convincing experiment demonstrating the existence of elasticity in polymeric fluids. The interface shape and steady-state climbing height depend on the rotation rate, fluid elasticity (through the presence of normal stresses), surface tension, and inertia. By solving the equations of motion in the low rotation rate limit for a second-order fluid, a mathematical relationship between the interface deflection and the fluid material functions, specifically the first and second normal stress differences, emerges.

View Article and Find Full Text PDF
Article Synopsis
  • Micro-prosthetics need durable and customizable components with precise details, which can be achieved through 3D printing, although material biocompatibility limits choices.
  • This study focuses on using hydroxyapatite (HA) and silk protein composites, exploring their printability and mechanical properties by adjusting composition and water content.
  • Findings reveal that incorporating silk enhances the mechanical strength and quality of printed HA components by improving ductility, preventing material issues during printing, and leading to better final product characteristics for biomedical applications.
View Article and Find Full Text PDF

Arrested soft materials such as gels and glasses exhibit a slow stress relaxation with a broad distribution of relaxation times in response to linear mechanical perturbations. Although this macroscopic stress relaxation is an essential feature in the application of arrested systems as structural materials, consumer products, foods, and biological materials, the microscopic origins of this relaxation remain poorly understood. Here, we elucidate the microscopic dynamics underlying the stress relaxation of such arrested soft materials under both quiescent and mechanically perturbed conditions through X-ray photon correlation spectroscopy.

View Article and Find Full Text PDF

Chlorosulfonic acid and oleum are ideal solvents for enabling the transformation of disordered carbon nanotubes (CNTs) into precise and highly functional morphologies. Currently, processing these solvents using extrusion techniques presents complications due to chemical compatibility, which constrain equipment and substrate material options. Here, we present a novel acid solvent system based on methanesulfonic or -toluenesulfonic acids with low corrosivity, which form true solutions of CNTs at concentrations as high as 10 g/liter (≈0.

View Article and Find Full Text PDF

A drop of an aqueous suspension of nanoparticles placed on a substrate forms a solid deposit as it dries. For dilute suspensions, particles accumulate within a narrow ring at the drop edge, whereas a uniform coating covering the entire wetted area forms for concentrated suspensions. In between these extremes, we report two additional regimes characterized by non-uniform deposit thicknesses and by distinct crack morphologies.

View Article and Find Full Text PDF
Article Synopsis
  • Dissolving small amounts of polymer in a Newtonian fluid can significantly alter how that fluid flows, especially in transitional and turbulent states.
  • High-speed imaging techniques reveal complex behaviors in submerged jets of these polymer solutions as they enter calm Newtonian fluids.
  • A new transitional pathway to elastoinertial turbulence is identified, characterized by unique shear-layer instabilities producing polymer filaments, with a consistent frequency decay pattern observed across varying conditions.
View Article and Find Full Text PDF

As first described by Leidenfrost, liquid droplets levitate over their own vapor when placed on a sufficiently hot substrate. The Leidenfrost effect not only confers remarkable properties such as mechanical and thermal insulation, zero adhesion, and extreme mobility but also requires a high energetic thermal cost. We describe here a previously unexplored approach using active liquids able to sustain levitation in the absence of any external forcing at ambient temperature.

View Article and Find Full Text PDF

Characterizing and understanding the viscoelastic mechanical properties of natural and synthetic fibers is of great importance in many biological and industrial applications. Microscopic techniques such as micro/nano indentation have been successfully employed in such efforts, yet these tests are often challenging to perform on fibers and come with certain limitations in the interpretation of the obtained results within the context of the macroscopic viscoelasticity in the fiber. Here we instead explore the properties of a series of natural and synthetic fibers, using a freely-oscillating torsional pendulum.

View Article and Find Full Text PDF

Colloidal gels result from the aggregation of Brownian particles suspended in a solvent. Gelation is induced by attractive interactions between individual particles that drive the formation of clusters, which in turn aggregate to form a space-spanning structure. We study this process in aluminosilicate colloidal gels through time-resolved structural and mechanical spectroscopy.

View Article and Find Full Text PDF

Biological organic-inorganic materials remain a popular source of inspiration for bioinspired materials design and engineering. Inspired by the self-assembling metal-reinforced mussel holdfast threads, we tested if metal-coordinate polymer networks can be utilized as simple composite scaffolds for direct in situ crosslink mineralization. Starting with aqueous solutions of polymers end-functionalized with metal-coordinating ligands of catechol or histidine, here we show that inter-molecular metal-ion coordination complexes can serve as mineral nucleation sites, whereby significant mechanical reinforcement is achieved upon nanoscale particle growth directly at the metal-coordinate network crosslink sites.

View Article and Find Full Text PDF

Patchy particle interactions are predicted to facilitate the controlled self-assembly and arrest of particles into phase-stable and morphologically tunable "equilibrium" gels, which avoids the arrested phase separation and subsequent aging that is typically observed in traditional particle gels with isotropic interactions. Despite these promising traits of patchy particle interactions, such tunable equilibrium gels have yet to be realized in the laboratory due to experimental limitations associated with synthesizing patchy particles in high yield. Here, we introduce a supramolecular metal-coordination platform consisting of metallic nanoparticles linked by telechelic polymer chains, which validates the predictions associated with patchy particle interactions and facilitates the design of equilibrium particle hydrogels through limited valency interactions.

View Article and Find Full Text PDF

Asphaltenes are heavy aromatic components of crude oil. Their complex chemical makeup-an aromatic core surrounded by aliphatic side chains-enables them to adhere to most surfaces. Their buildup in pipes can result in clogging and lead to interruption of production operations and expensive mechanical cleaning.

View Article and Find Full Text PDF

Asphaltenes, heavy aromatic components of crude oil, are known to adsorb on surfaces and can lead to pipe clogging or hinder oil recovery. Because of their multicomponent structure, the details of their interactions with surfaces are complex. We investigate the effect of the physicochemical properties of the substrate on the extent and mechanism of this adsorption.

View Article and Find Full Text PDF

Colloids with short range attractions self-assemble into sample-spanning structures, whose dynamic nature results in a thermokinematic memory of the deformation history, also referred to as "thixotropy." Here, we study the origins of the thixotropic effect in these time- and rate-dependent materials by investigating hysteresis across different length scales: from particle-level local measurements of coordination number (microscale), to the appearance of density and velocity fluctuations (mesoscale), and up to the shear stress response to an imposed deformation (macroscale). The characteristic time constants at each scale become progressively shorter, and hysteretic effects become more significant as we increase the strength of the interparticle attraction.

View Article and Find Full Text PDF

The high cost of synthetic polymers has been a key impediment limiting the widespread adoption of polymer drag reduction techniques in large-scale engineering applications, such as marine drag reduction. To address consumable cost constraints, we investigate the use of high molar mass biopolysaccharides, present in the mucilaginous epidermis of plant seeds, as inexpensive drag reducers in large Reynolds number turbulent flows. Specifically, we study the aqueous mucilage extracted from flax seeds (Linum usitatissimum) and compare its drag reduction efficacy to that of poly(ethylene oxide) or PEO, a common synthetic polymer widely used as a drag reducing agent in aqueous flows.

View Article and Find Full Text PDF

The pinch-off of a bubble is an example of the formation of a singularity, exhibiting a characteristic separation of length and time scales. Because of this scale separation, one expects universal dynamics that collapse into self-similar behavior determined by the relative importance of viscous, inertial, and capillary forces. Surprisingly, however, the pinch-off of a bubble in a large tank of viscous liquid is known to be nonuniversal.

View Article and Find Full Text PDF