New approaches for the engineering of the 3D microstructure, pore modality, and chemical functionality of hierarchically porous nanocarbon assemblies are key to develop the next generation of functional aerogel and membrane materials. Here, interfacially driven assembly of carbon nanotubes (CNT) is exploited to fabricate structurally directed aerogels with highly controlled internal architectures, composed of pseudo-monolayer, CNT microcages. CNT Pickering emulsions enable engineering at fundamentally different length scales, whereby the microporosity, mesoporosity, and macroporosity are decoupled and individually controlled through CNT type, CNT number density, and process energy, respectively.
View Article and Find Full Text PDFMeasurements of equilibrium vapor pressures by effusion thermogravimetry and melting points by differential scanning calorimetry reveal that the melting temperature and equilibrium vapor pressures of 1,4-bis(phenylethynyl)benzene (DEB) do not vary monotonically with the hydrogenation extent. Contrary to intuition which suggests increasing volatility with hydrogenation, results indicate decreasing volatility for the first two hydrogenation steps before a non-monotonic upward trend, in which trans-isomers are less volatile. Insights on structural packing and functional groups were obtained from x-ray diffraction and infrared studies to shed light on the observed variation in the volatility of DEB with hydrogenation.
View Article and Find Full Text PDF