Publications by authors named "Garenaux E"

The glycosylation process is extremely heterogeneous, dynamic, and complex compared with any other post-translational modification of protein. In the context of recombinant glycoproteins, glycosylation is a critical attribute as glycans could dramatically alter protein functions and properties including activity, half-life, in vivo localization, stability, and, last but not least, immunogenicity. Liquid chromatography combined to mass spectrometry constitutes the most powerful analytical approach to achieve the comprehensive glycan profile description or comparison of glycoproteins.

View Article and Find Full Text PDF

Unlabelled: Essentials Glycosylation heterogeneity of recombinant proteins affects pharmacokinetics and immunogenicity. N-glycomics/glycoproteomics of plasma-derived Factor VIII and 6 recombinant FVIIIs were compared. Depending on cell line, significant differences to plasma-derived FVIII were observed.

View Article and Find Full Text PDF

A novel mechanism is revealed by which clinical isolates of adherent-invasive (AIEC) penetrate into the epithelial cell layer, replicate, and establish biofilms in Crohn's disease. AIEC uses the FimH fimbrial adhesin to bind to oligomannose glycans on the surface of host cells. Oligomannose glycans exposed on early apoptotic cells are the preferred binding targets of AIEC, so apoptotic cells serve as potential entry points for bacteria into the epithelial cell layer.

View Article and Find Full Text PDF

Precise directional control of pollen-tube growth by pistil tissue is critical for successful fertilization of flowering plants [1-3]. Ovular attractant peptides, which are secreted from two synergid cells on the side of the egg cell, have been identified [4-6]. Emerging evidence suggests that the ovular directional cue is not sufficient for successful guidance but that competency control by the pistil is critical for the response of pollen tubes to the attraction signal [1, 3, 7].

View Article and Find Full Text PDF

The spores of the Bacillus cereus group (B. cereus, Bacillus anthracis, and Bacillus thuringiensis) are surrounded by a paracrystalline flexible yet resistant layer called exosporium that plays a major role in spore adhesion and virulence. The major constituent of its hairlike surface, the trimerized glycoprotein BclA, is attached to the basal layer through an N-terminal domain.

View Article and Find Full Text PDF

The aetiology of Crohn's disease (CD) involves disorders in host genetic factors and intestinal microbiota. Adherent-invasive Escherichia coli (AIEC) are receiving increased attention because in studies of mucosa-associated microbiota, they are more prevalent in CD patients than in healthy subjects. AIEC are associated both with ileal and colonic disease phenotypes.

View Article and Find Full Text PDF

Unlabelled: Ileal lesions of patients with Crohn's disease are colonized by adherent-invasive Escherichia coli (AIEC), which is able to adhere to and to invade intestinal epithelial cells (IEC), to replicate within macrophages, and to form biofilms on the surface of the intestinal mucosa. Previous analyses indicated the involvement of the σ(E) pathway in AIEC-IEC interaction, as well as in biofilm formation, with σ(E) pathway inhibition leading to an impaired ability of AIEC to colonize the intestinal mucosa and to form biofilms. The aim of this study was to characterize the σ(E) regulon of AIEC strain LF82 in order to identify members involved in AIEC phenotypes.

View Article and Find Full Text PDF

Mammalian sperm acquire fertility through a functional maturation process called capacitation, where sperm membrane molecules are drastically remodeled. In this study, we found that a wheat germ agglutinin (WGA)-reactive protein on lipid rafts, named WGA16, is removed from the sperm surface on capacitation. WGA16 is a prostate-derived seminal plasma protein that has never been reported and is deposited on the sperm surface in the male reproductive tract.

View Article and Find Full Text PDF

Interaction of Hsp70 with natural and artificial acidic glycans is demonstrated based on the native PAGE analysis. Hsp70 interacts with acidic glycopolymers that contain clustered sulfated and di-sialylated glycan moieties on a polyacrylamide backbone, but not with neutral or mono-sialylated glycopolymers. Hsp70 also interacts and forms a large complex with heparin, heparan sulfate, and dermatan sulfate that commonly contain 2-O-sulfated iduronic acid residues, but not with other types of glycosaminoglycans (GAGs).

View Article and Find Full Text PDF

A highly glycosylated protein, which has unique, novel features in localization, structure, and potential function, is found in pig sperm, and named WGA-gp due to its high binding property with wheat germ agglutinin (WGA). WGA-gp is localized mainly in flagella and enriched in membrane microdomains or lipid rafts. It is not detected by ordinary protein staining methods due to a high content of both N- and O-glycans consisting of neutral monosaccharides.

View Article and Find Full Text PDF

Bacterial species from the Bacillus genus, including Bacillus cereus and Bacillus anthracis, synthesize secondary cell wall polymers (SCWP) covalently associated to the peptidoglycan through a phospho-diester linkage. Although such components were observed in a wide panel of B. cereus and B.

View Article and Find Full Text PDF

The role of the BclA domains of B. cereus ATCC 14579 was investigated in order to understand the phenomena involved in the interfacial processes occurring between spores and inert surfaces. This was done by (i) creating deletions in the collagen-like region (CLR) and the C-terminal domain (CTD) of BclA, (ii) building BclA proteins with various lengths in the CLR and (iii) modifying the hydrophobic upper surface in the CTD.

View Article and Find Full Text PDF

Bacillus cereus spores are surrounded by a loose-fitting layer called the exosporium, whose distal part is mainly formed from glycoproteins. The role played by the exosporium glycoproteins of B. cereus ATCC 14579 (BclA and ExsH) was investigated by considering hydrophobicity and charge, as well as the properties of spore adhesion to stainless steel.

View Article and Find Full Text PDF

Although insects are among the most diverse groups of the animal kingdom and may be found in nearly all environments, one can observe an obvious lack of structural data on their glycosylation ability. Hymenoptera is the second largest of all insect orders with more than 110,000 identified species and includes the most famous examples of social insects' species such as wasps, bees and ants. In this report, the structural variety of O-glycans has been studied in two Hymenoptera species.

View Article and Find Full Text PDF

This study was designed to elucidate the influence of spore properties such as the presence of an exosporium, on their ability to adhere to materials. This analysis was performed on 17 strains belonging to the B. cereus group and to less related Bacillus species.

View Article and Find Full Text PDF

N-Linked glycosylation is the most frequent modification of secreted proteins in eukaryotic cells that plays a crucial role in protein folding and trafficking. Mature N-glycans are sequentially processed in the endoplasmic reticulum and Golgi apparatus through a pathway highly conserved in most eukaryotic organisms. Here, we demonstrate that the obligate intracellular protozoan parasite Toxoplasma gondii independently transfers endogenous truncated as well as host-derived N-glycans onto its own proteins.

View Article and Find Full Text PDF

Purifying and analysing sulfated oligosaccharides by mass spectrometry often constitutes a challenge. We present here a single step method to isolate sulfated compounds from a complex mixture of neutral and acidic oligosaccharide-alditols. The strategy relies on the exclusion of sulfated molecules from strong cation exchange resin.

View Article and Find Full Text PDF

Protein glycosylation in microsporidia, a fungi-related group comprising exclusively obligate intracellular parasitic species, is still poorly documented. Here, we have studied glycoconjugate localization and glycan structures in spores of Encephalitozoon cuniculi and Antonospora locustae, two distantly related microsporidians invading mammalian and insect hosts, respectively. The polar sac-anchoring disc complex or polar cap, an apical element of the sporal invasion apparatus, was strongly periodic acid-thiocarbohydrazide-Ag proteinate-positive.

View Article and Find Full Text PDF

We describe here the structural deciphering of four wasp O-glycans. Following purification of a mixture of glycoproteins from nests of the common wasp Vespula germanica L. (Hymenoptera), their substituting O-glycans were liberated by reducing beta-elimination and characterised using a combination of high resolution NMR and mass spectrometry analyses.

View Article and Find Full Text PDF