Publications by authors named "Gardsvoll H"

Antibody-drug conjugates (ADCs) hold promise to advance targeted therapy of pancreatic ductal adenocarcinoma (PDAC), where the desmoplastic tumor stroma challenges effective treatment. Here, we explored the urokinase plasminogen activator receptor (uPAR) as a candidate ADC target in PDAC, harnessing its massive tumoral and stromal expression in this stroma-dense tumor. We generated a site-specific ADC offering high-affinity, cross-species reactivity, and efficient internalization of the anti-uPAR monoclonal antibody, FL1, carrying a potent anthracycline derivative (PNU-158692).

View Article and Find Full Text PDF

Receptor-mediated cellular uptake of specific ligands constitutes an important step in the dynamic regulation of individual protein levels in extracellular fluids. With a focus on the inflammatory lung, we here performed a proteomics-based search for novel ligands regulated by the mannose receptor (MR), a macrophage-expressed endocytic receptor. WT and MR-deficient mice were exposed to lipopolysaccharide, after which the protein content in their lung epithelial lining fluid was compared by tandem mass tag-based mass spectrometry.

View Article and Find Full Text PDF

Thrombospondin-1 (TSP-1) is a matricellular protein with a multitude of functions in the pericellular and extracellular environment. We report a novel pathway for the regulation of extracellular TSP-1, governed by the endocytic collagen receptor, uPARAP (urokinase plasminogen activator receptor-associated protein; MRC2 gene product, also designated Endo180, CD280). First, using a novel proteomic approach for unbiased identification of ligands for endocytosis, we identify TSP-1 as a candidate ligand for specific uptake by uPARAP.

View Article and Find Full Text PDF
Article Synopsis
  • * The study measured uPARAP levels in various MM sample types and found higher expression in certain MM subtypes, which was not influenced by asbestos exposure or chemotherapy status.
  • * Researchers demonstrated that MM cell lines specifically take up an anti-uPARAP antibody and are sensitive to a therapeutic conjugate of this antibody with a cytotoxin, indicating potential for uPARAP in diagnosing and treating MM.
View Article and Find Full Text PDF

Cancer-induced bone degradation is part of the pathological process associated with both primary bone cancers, such as osteosarcoma, and bone metastases originating from, e.g., breast, prostate, and colon carcinomas.

View Article and Find Full Text PDF

The membrane-anchored matrix metalloprotease MT1-MMP is a potent collagenolytic enzyme with a well-established role in extracellular matrix turnover and cellular invasion into collagen-rich tissues. MT1-MMP is highly expressed in various types of cancer and has been demonstrated to be directly involved in several stages of tumor progression, including primary tumor growth, angiogenesis, invasion and metastasis. Osteosarcoma is the most common type of primary bone cancer.

View Article and Find Full Text PDF

Ly6/uPAR/α-neurotoxin domain (LU-domain) is characterized by the presence of 4-5 disulfide bonds and three flexible loops that extend from a core stacked by several conversed disulfide bonds (thus also named three-fingered protein domain). This highly structurally stable protein domain is typically a protein-binder at extracellular space. Most LU proteins contain only single LU-domain as represented by Ly6 proteins in immunology and α-neurotoxins in snake venom.

View Article and Find Full Text PDF

C4.4A is a glycosylphosphatidylinositol-anchored membrane protein comprised of two LU domains (Ly6/uPAR-like domains) and an extensively O-glycosylated C-terminal Ser/Thr/Pro-rich region. C4.

View Article and Find Full Text PDF

A key task in developing the field of personalized cancer therapy is the identification of novel molecular targets that enable treatment of cancers not susceptible to other means of specific therapy. The collagen receptor uPARAP/Endo180 is overexpressed by malignant cells in several non-epithelial cancers, notably including sarcomas, glioblastomas and subsets of acute myeloid leukemia. In contrast, in healthy adult individuals, expression is restricted to minor subsets of mesenchymal cells.

View Article and Find Full Text PDF

GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking.

View Article and Find Full Text PDF

The urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycolipid-anchored membrane protein often expressed in the microenvironment of invasive solid cancers and high levels are generally associated with poor patient prognosis (Kriegbaum et al., 2011 [1]). uPAR is organized as a dynamic modular protein structure composed of three homologous Ly6/uPAR domains (LU).

View Article and Find Full Text PDF

The urokinase plasminogen activator system plays a key role in tissue degradation during cancer invasion. The linker region between domains I and II of the intact, three domain urokinase receptor uPAR(I-III) is highly susceptible to proteolytic cleavage and the resulting cleaved uPAR forms are strong prognostic biomarkers in several types of cancer, i.e.

View Article and Find Full Text PDF

The urokinase-type plasminogen activator receptor (uPAR) is a multidomain glycolipid-anchored membrane protein, which facilitates extracellular matrix remodeling by focalizing plasminogen activation to cell surfaces via its high-affinity interaction with uPA. The modular assembly of its three LU (Ly6/uPAR-like) domains is inherently flexible and binding of uPA drives uPAR into its closed conformation, which presents the higher-affinity state for vitronectin thus providing an allosteric regulatory mechanism. Using a new class of epitope-mapped anti-uPAR monoclonal antibodies (mAbs), we now demonstrate that the reciprocal stabilization is indeed also possible.

View Article and Find Full Text PDF

Rationale: GPIHBP1, a GPI-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) in the subendothelial spaces and shuttles it to the capillary lumen. GPIHBP1 missense mutations that interfere with LPL binding cause familial chylomicronemia.

Objective: We sought to understand mechanisms by which GPIHBP1 mutations prevent LPL binding and lead to chylomicronemia.

View Article and Find Full Text PDF
Article Synopsis
  • GPIHBP1 is a protein that helps transport lipoprotein lipase (LPL) across microvascular endothelial cells, relying on its Ly6 domain to bind LPL.
  • A point mutation in GPIHBP1 (Ser-107 to Cys) was found in a patient and two siblings with severe hypertriglyceridemia, leading to very low levels of LPL in their blood.
  • The mutation caused GPIHBP1 to form disulfide-linked dimers and multimers instead of functioning as a monomer, preventing it from effectively binding LPL and contributing to the hypertriglyceridemia.
View Article and Find Full Text PDF

Several members of the Ly-6/uPAR (LU)-protein domain family are differentially expressed in human squamous epithelia. In some cases, they even play important roles in maintaining skin homeostasis, as exemplified by the secreted single domain member, SLURP-1, the deficiency of which is associated with the development of palmoplantar hyperkeratosis in the congenital skin disorder Mal de Meleda. In the present study, we have characterized a new member of the LU-protein domain family, which we find to be predominantly expressed in the stratum granulosum of human skin, thus resembling the expression of SLURP-1.

View Article and Find Full Text PDF

The group of matrix metalloproteases (MMPs) is responsible for multiple processes of extracellular matrix remodeling in the healthy body but also for matrix and tissue destruction during cancer invasion and metastasis. The understanding of the contributions from each individual MMP, both in healthy and pathological events, has been complicated by the lack of specific inhibitors and the fact that some of the potent MMPs are multifunctional enzymes. These factors have also hampered the setup of therapeutic strategies targeting MMP activity.

View Article and Find Full Text PDF

Data accumulated over the latest two decades have established that the serine protease urokinase-type plasminogen activator (uPA) is a potential therapeutic target in cancer. When designing inhibitors of the proteolytic activity of serine proteases, obtaining sufficient specificity is problematic, because the topology of the proteases' active sites are highly similar. In an effort to generate highly specific uPA inhibitors with new inhibitory modalities, we isolated uPA-binding RNA aptamers by screening a library of 35 nucleotides long 2'-fluoro-pyrimidine RNA molecules using a version of human pro-uPA lacking the epidermal growth factor-like and kringle domains as bait.

View Article and Find Full Text PDF

The urokinase-type plasminogen activator receptor (uPAR) provides a rendezvous between proteolytic degradation of the extracellular matrix and integrin-mediated adhesion to vitronectin. These processes are, however, tightly linked because the high affinity binding of urokinase regulates the binding of uPAR to matrix-embedded vitronectin. Although crystal structures exist to define the corresponding static bi- and trimolecular receptor complexes, it is evident that the dynamic property of uPAR plays a decisive role in its function.

View Article and Find Full Text PDF

The urokinase receptor urokinase-type plasminogen activator receptor (uPAR) is a surface receptor capable of not only focalizing urokinase-type plasminogen activator (uPA)-mediated fibrinolysis to the pericellular micro-environment but also promoting cell migration and chemotaxis. Consistent with this multifunctional role, uPAR binds several extracellular ligands, including uPA and vitronectin. Structural studies suggest that uPAR possesses structural flexibility.

View Article and Find Full Text PDF

The high-affinity interaction between the urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) plays a regulatory role for both extravascular fibrinolysis and uPAR-mediated adhesion and migration on vitronectin-coated surfaces. We have recently proposed that the adhesive function of uPAR is allosterically regulated via a "tightening" of its three-domain structure elicited by uPA binding. To challenge this proposition, we redesigned the uPAR structure to limit its inherent conformational flexibility by covalently tethering domains DI and DIII via a non-natural interdomain disulfide bond (uPAR(H47C-N259C)).

View Article and Find Full Text PDF

Ookinete invasion of the mosquito midgut is an essential step for the development of the malaria parasite in the mosquito. Invasion involves recognition between a presumed mosquito midgut receptor and an ookinete ligand. Here, we show that enolase lines the ookinete surface.

View Article and Find Full Text PDF

The urokinase-type plasminogen activator receptor (uPAR) is a glycolipid-anchored membrane protein with an established role in focalizing uPA-mediated plasminogen activation on cell surfaces. Distinct from this function, uPAR also modulates cell adhesion and migration on vitronectin-rich matrices. Although uPA and vitronectin engage structurally distinct binding sites on uPAR, they nonetheless cooperate functionally, as uPA binding potentiates uPAR-dependent induction of lamellipodia on vitronectin matrices.

View Article and Find Full Text PDF

Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known.

View Article and Find Full Text PDF

In the last two decades, the urokinase-type plasminogen activator receptor (uPAR) has been implicated in a number of human pathologies such as cancer, bacterial infections, and paroxysmal nocturnal hemoglobinuria. The primary function of this glycolipid-anchored receptor is to focalize uPA-mediated plasminogen activation at the cell surface, which is accomplished by its high-affinity interaction with the growth factor-like domain of uPA. Detailed insights into the molecular basis underlying the interactions between uPAR and its two bona fide ligands, uPA and vitronectin, have been obtained recently by X-ray crystallography and surface plasmon resonance studies.

View Article and Find Full Text PDF