Purpose: We sought to evaluate outcomes for clinical management after a genetic diagnosis from the Deciphering Developmental Disorders study.
Methods: Individuals in the Deciphering Developmental Disorders study who had a pathogenic/likely pathogenic genotype in the DECIPHER database were selected for inclusion ( = 5010). Clinical notes from regional clinical genetics services notes were reviewed to assess predefined clinical outcomes relating to interventions, prenatal choices, and information provision.
Background And Objectives: Disorders of coenzyme Q (CoQ) biosynthesis comprise a group of 11 clinically and genetically heterogeneous rare primary mitochondrial diseases. We sought to delineate clinical, biochemical, and neuroimaging features of these disorders, together with outcomes after oral CoQ supplementation and the utility of peripheral blood mononuclear cell (PBMNC) CoQ levels in monitoring therapy.
Methods: This was a retrospective cohort study, registered as an audit at a specialist pediatric hospital (Registration Number: 3318) of 14 patients with genetically confirmed CoQ biosynthesis deficiency, including 13 previously unreported cases.
Defects in motile cilia, termed motile ciliopathies, result in clinical manifestations affecting the respiratory and reproductive system, as well as laterality defects and hydrocephalus. We previously defined biallelic variants causing and male infertility, mirroring the findings in mice. Here, we present clinical and genomic findings in five newly identified individuals from four unrelated families affected by -related disorder.
View Article and Find Full Text PDFHeterozygous, pathogenic CUX1 variants are associated with global developmental delay or intellectual disability. This study delineates the clinical presentation in an extended cohort and investigates the molecular mechanism underlying the disorder in a Cux1 mouse model. Through international collaboration, we assembled the phenotypic and molecular information for 34 individuals (23 unpublished individuals).
View Article and Find Full Text PDFMol Genet Genomic Med
December 2023
HNRNPU encodes a multifunctional RNA-binding protein that plays critical roles in regulating pre-mRNA splicing, mRNA stability, and translation. Aberrant expression and dysregulation of HNRNPU have been implicated in various human diseases, including cancers and neurological disorders. We applied a next generation sequencing based assay (EPIC-NGS) to investigate genome-wide methylation profiling for >2 M CpGs for 7 individuals with a neurodevelopmental disorder associated with HNRNPU germline pathogenic loss-of-function variants.
View Article and Find Full Text PDFFollowing the diagnosis of a paediatric disorder caused by an apparently de novo mutation, a recurrence risk of 1-2% is frequently quoted due to the possibility of parental germline mosaicism; but for any specific couple, this figure is usually incorrect. We present a systematic approach to providing individualized recurrence risk. By combining locus-specific sequencing of multiple tissues to detect occult mosaicism with long-read sequencing to determine the parent-of-origin of the mutation, we show that we can stratify the majority of couples into one of seven discrete categories associated with substantially different risks to future offspring.
View Article and Find Full Text PDFDysfunction of the endoplasmic reticulum (ER) in insulin-producing beta cells results in cell loss and diabetes mellitus. Here we report on five individuals from three different consanguineous families with infancy-onset diabetes mellitus and severe neurodevelopmental delay caused by a homozygous p.(Arg371Ser) mutation in FICD.
View Article and Find Full Text PDFPurpose: Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family.
View Article and Find Full Text PDFSleep apnea is a common disorder that represents a global public health burden. KCNK3 encodes TASK-1, a K channel implicated in the control of breathing, but its link with sleep apnea remains poorly understood. Here we describe a new developmental disorder with associated sleep apnea (developmental delay with sleep apnea, or DDSA) caused by rare de novo gain-of-function mutations in KCNK3.
View Article and Find Full Text PDFPathogenic variants cause a rare autosomal dominant neurodevelopmental disorder referred to as the Bosch-Boonstra-Schaaf Optic Atrophy Syndrome. Although visual loss is a prominent feature seen in affected individuals, the molecular and cellular mechanisms contributing to visual impairment are still poorly characterized. We conducted a deep phenotyping study on a cohort of 22 individuals carrying pathogenic variants to document the neurodevelopmental and ophthalmological manifestations, in particular the structural and functional changes within the retina and the optic nerve, which have not been detailed previously.
View Article and Find Full Text PDFArch Dis Child Educ Pract Ed
October 2022
Withdrawal of life-sustaining support on the neonatal unit presents a set of unique challenges specific in this age group of patients. This article aims to provide an overview of the key factors that should be considered during this process. It explores the practicalities of care delivery that reflects the psychological impact of undergoing end-of-life care on parents and team members.
View Article and Find Full Text PDFWith advances in genetic testing and improved access to such advances, whole exome sequencing is becoming a first-line investigation in clinical work-up of children with developmental delay/intellectual disability (ID). As a result, the need to understand the importance of genetic variants and its effect on the clinical phenotype is increasing. Here, we report on the largest cohort of patients with HNRNPU variants.
View Article and Find Full Text PDFMultiple TREX mRNA export complex subunits (e.g., THOC1, THOC2, THOC5, THOC6, THOC7) have now been implicated in neurodevelopmental disorders (NDDs), neurodegeneration and cancer.
View Article and Find Full Text PDFPurpose: Pathogenic variants in ARID1B are one of the most frequent causes of intellectual disability (ID) as determined by large-scale exome sequencing studies. Most studies published thus far describe clinically diagnosed Coffin-Siris patients (ARID1B-CSS) and it is unclear whether these data are representative for patients identified through sequencing of unbiased ID cohorts (ARID1B-ID). We therefore sought to determine genotypic and phenotypic differences between ARID1B-ID and ARID1B-CSS.
View Article and Find Full Text PDFRepeats in coding and non-coding regions have increasingly been associated with many human genetic disorders, such as Richieri-Costa-Pereira syndrome (RCPS). RCPS, mostly characterized by midline cleft mandible, Robin sequence and limb defects, is an autosomal-recessive acrofacial dysostosis mainly reported in Brazilian patients. This disorder is caused by decreased levels of , mostly due to an increased number of repeats at the 5'UTR.
View Article and Find Full Text PDFRichieri-Costa-Pereira syndrome is a rare autosomal recessive acrofacial dysostosis that has been mainly described in Brazilian individuals. The cardinal features include Robin sequence, cleft mandible, laryngeal anomalies and limb defects. A biallelic expansion of a complex repeated motif in the 5' untranslated region of EIF4A3 has been shown to cause this syndrome, commonly with 15 or 16 repeats.
View Article and Find Full Text PDFIntellectual disability (ID) is a highly heterogeneous disorder involving at least 600 genes, yet a genetic diagnosis remains elusive in ∼35%-40% of individuals with moderate to severe ID. Recent meta-analyses statistically analyzing de novo mutations in >7,000 individuals with neurodevelopmental disorders highlighted mutations in PPM1D as a possible cause of ID. PPM1D is a type 2C phosphatase that functions as a negative regulator of cellular stress-response pathways by mediating a feedback loop of p38-p53 signaling, thereby contributing to growth inhibition and suppression of stress-induced apoptosis.
View Article and Find Full Text PDFIdentification of over 500 epigenetic regulators in humans raises an interesting question regarding how chromatin dysregulation contributes to different diseases. Bromodomain and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator possessing three histone-binding domains, one non-specific DNA-binding module, and several motifs for interacting with and activating three lysine acetyltransferases. Genetic analyses of fish brpf1 and mouse Brpf1 have uncovered an important role in skeletal, hematopoietic, and brain development, but it remains unclear how BRPF1 is linked to human development and disease.
View Article and Find Full Text PDFDNA replication precisely duplicates the genome to ensure stable inheritance of genetic information. Impaired licensing of origins of replication during the G1 phase of the cell cycle has been implicated in Meier-Gorlin syndrome (MGS), a disorder defined by the triad of short stature, microtia, and a/hypoplastic patellae. Biallelic partial loss-of-function mutations in multiple components of the pre-replication complex (preRC; ORC1, ORC4, ORC6, CDT1, or CDC6) as well as de novo stabilizing mutations in the licensing inhibitor, GMNN, cause MGS.
View Article and Find Full Text PDF