Tertiary lymphoid tissues (TLTs) are adaptive immune structures that develop during chronic inflammation and may worsen or lessen disease outcomes in a context-specific manner. Immune cell activity governing TLT formation in the intestines is dependent on immune cell aryl hydrocarbon receptor (AhR) activation. Homeostatic immune cell activity in the intestines is further dependent on ligand activation of AhR in intestinal epithelial cells (IECs), yet whether AhR activation and signaling in IECs influences the formation of TLTs in the presence of dietary AhR ligands is not known.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
August 2024
After birth, the development of secondary lymphoid tissues (SLTs) in the colon is dependent on the expression of the aryl hydrocarbon receptor (AhR) in immune cells as a response to the availability of AhR ligands. However, little is known about how AhR activity from intestinal epithelial cells (IECs) may influence the development of tertiary lymphoid tissues (TLTs). As organized structures that develop at sites of inflammation or infection during adulthood, TLTs serve as localized centers of adaptive immune responses, and their presence has been associated with the resolution of inflammation and tumorigenesis in the colon.
View Article and Find Full Text PDFIn recent years, researchers have demonstrated that estrogen and its receptors, aside from their role in regulating several biological functions, contribute to the development and progression/severity of inflammatory bowel diseases (IBDs). IBDs include both ulcerative colitis (UC) and Crohn's disease (CD). Epidemiological data indicate a clear difference in the incidence, severity, and complications of IBDs between sexes.
View Article and Find Full Text PDFInsufficient stress response and elevated oxidative stress can contribute to skeletal muscle atrophy during mechanical unloading (e.g., spaceflight and bedrest).
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
March 2020
Consumption of a high-fat diet has been associated with an increased risk of developing colorectal cancer (CRC). However, the effects of the interaction between dietary fat content and the aryl hydrocarbon receptor (AhR) on colorectal carcinogenesis remain unclear. Mainly known for its role in xenobiotic metabolism, AhR has been identified as an important regulator for maintaining intestinal epithelial homeostasis.
View Article and Find Full Text PDFSkeletal muscle is a highly adaptable tissue capable of remodeling when dynamic stress is altered, including changes in mechanical loading and stretch. When muscle is subjected to an unloaded state (e.g.
View Article and Find Full Text PDFPurpose Of Review: Flaxseed and its bioactive components have been associated with a decreased risk of colorectal cancer incidence and progression. This review aims to summarize recent research regarding the role of flaxseed and each of its major dietary bioactive components in reducing colorectal cancer.
Recent Findings: In both human and animal model experiments, flaxseed consumption had beneficial effects on colon physiology associated with reduction in colorectal cancer risk or occurrence.
New Findings: What is the central question of this study? Translocation of nNOSμ initiates catabolic signalling via FoxO3a and skeletal muscle atrophy during mechanical unloading. Recent evidence suggests that unloading-induced muscle atrophy and FoxO3a activation are redox sensitive. Will a mimetic of superoxide dismutase and catalase (i.
View Article and Find Full Text PDF