Publications by authors named "Garcia-Ruiz H"

Potato virus Y (PVY, Potyviridae) is among the most important viral pathogens of potato. The potato resistance gene Ny confers hypersensitive resistance to the ordinary strain of PVY (PVY), but not the necrotic strain (PVY). Here, we unveil that residue 247 of PVY helper component proteinase (HCPro) acts as a central player controlling Ny strain-specific activation.

View Article and Find Full Text PDF

Plant viruses depend on host cellular factors for their replication and movement. There are cellular proteins that change their localization and/or expression and have a proviral role or antiviral activity and interact with or target viral proteins. Identification of those proteins and their roles during infection is crucial for understanding plant-virus interactions and to design antiviral resistance in crops.

View Article and Find Full Text PDF

Gene silencing is a conserved mechanism in eukaryotes that dynamically regulates gene expression. In plants, gene silencing is critical for development and for maintenance of genome integrity. Additionally, it is a critical component of antiviral defence in plants, nematodes, insects, and fungi.

View Article and Find Full Text PDF

Virus evolution is the change in the genetic structure of a viral population over time and results in the emergence of new viral variants, strains, and species with novel biological properties, including adaptation to new hosts. There are host, vector, environmental, and viral factors that contribute to virus evolution. To achieve or fine tune compatibility and successfully establish infection, viruses adapt to a particular host species or to a group of species.

View Article and Find Full Text PDF

The polerovirus (family , genus ) genome consists of single-, positive-strand RNA organized in overlapping open reading frames (ORFs) that, in addition to others, code for protein 0 (P0, a gene silencing suppressor), a coat protein (CP, ORF3), and a read-through domain (ORF5) that is fused to the CP to form a CP-read-through (RT) protein. The genus contains twenty-six virus species that infect a wide variety of plants from cereals to cucurbits, to peppers. Poleroviruses are transmitted by a wide range of aphid species in the genera , and .

View Article and Find Full Text PDF

The relationship between structure and function is a major constituent of the rules of life. Structures and functions occur across all levels of biological organization. Current efforts to integrate conceptual frameworks and approaches to address new and old questions promise to allow a more holistic and robust understanding of how different biological functions are achieved across levels of biological organization.

View Article and Find Full Text PDF

Alternatives to protect crops against diseases are desperately needed to secure world food production and make agriculture more sustainable. Genetic resistance to pathogens utilized so far is mostly based on single dominant resistance genes that mediate specific recognition of invaders and that is often rapidly broken by pathogen variants. Perturbation of plant susceptibility (S) genes offers an alternative providing plants with recessive resistance that is proposed to be more durable.

View Article and Find Full Text PDF

The (SARS-CoV) and SARS-CoV-2 originated in bats and adapted to infect humans. Several SARS-CoV-2 strains have been identified. Genetic variation is fundamental to virus evolution and, in response to selection pressure, is manifested as the emergence of new strains and species adapted to different hosts or with novel pathogenicity.

View Article and Find Full Text PDF

Viruses are dependent on host factors at all parts of the infection cycle, such as translation, genome replication, encapsidation, and cell-to-cell and systemic movement. RNA viruses replicate their genome in compartments associated with the endoplasmic reticulum, chloroplasts, and mitochondria or peroxisome membranes. In contrast, DNA viruses replicate in the nucleus.

View Article and Find Full Text PDF

Orthotospoviruses are plant-infecting members of the family (order ), have a broad host range and are vectored by polyphagous thrips in a circulative-propagative manner. Because diverse hosts and vectors impose heterogeneous selection constraints on viral genomes, the evolutionary arms races between hosts and their pathogens might be manifested as selection for rapid changes in key genes. These observations suggest that orthotospoviruses contain key genetic components that rapidly mutate to mediate host adaptation and vector transmission.

View Article and Find Full Text PDF

RNA viruses exist as populations of genome variants. Virus-infected plants accumulate 21-24 nucleotide small interfering RNAs (siRNAs) derived from viral RNA (virus-derived siRNAs) through gene silencing. This paper describes the profile of mutations in virus-derived siRNAs for three members of the family Potyviridae: Turnip mosaic virus (TuMV), Papaya ringspot virus (PRSV) and Wheat streak mosaic virus (WSMV).

View Article and Find Full Text PDF

The terms genome engineering, genome editing, and gene editing, refer to modifications (insertions, deletions, substitutions) in the genome of a living organism. The most widely used approach to genome editing nowadays is based on Clustered Regularly Interspaced Short Palindromic Repeats and associated protein 9 (CRISPR-Cas9). In prokaryotes, CRISPR-Cas9 is an adaptive immune system that naturally protects cells from DNA virus infections.

View Article and Find Full Text PDF

Potyviruses (family , genus ) are the result of an initial radiation event that occurred 6,600 years ago. The genus currently consists of 167 species that infect monocots or dicots, including domesticated and wild plants. Potyviruses are transmitted in a non-persistent way by more than 200 species of aphids.

View Article and Find Full Text PDF

Plant viruses are responsible for losses in worldwide production of numerous economically important food and fuel crops. As obligate cellular parasites with very small genomes, viruses rely on their hosts for replication, assembly, intra- and intercellular movement, and attraction of vectors for dispersal. Chloroplasts are photosynthesis and are the site of replication for several viruses.

View Article and Find Full Text PDF

Plant virus genome replication and movement is dependent on host resources and factors. However, plants respond to virus infection through several mechanisms, such as autophagy, ubiquitination, mRNA decay and gene silencing, that target viral components. Viral factors work in synchrony with pro-viral host factors during the infection cycle and are targeted by antiviral responses.

View Article and Find Full Text PDF
WHEN VIRUSES INFECT PLANTS.

Scientia (Bristol)

January 2019

Just as human beings can catch a cold, plants can also get viral infections. Understanding the mechanisms regulating the interactions between plants and viruses is the first step towards developing better management strategies and using biotechnology methods to immunise plants and engineer genetic resistance to viruses in plants. This is the focus of research by Dr Hernan Garcia-Ruiz and his team based at the University of Nebraska, USA.

View Article and Find Full Text PDF

Mexico is a center of origin for several economically important plants including maize, cotton, and cocoa. Maize represents more than a food crop, has been declared a biological, cultural, agricultural and economic patrimony, and is linked to the national identity of Mexicans. In this review, we describe the historic and current use of genetically modified plants in Mexico and factors that contributed to the development of the biosafety regulation.

View Article and Find Full Text PDF

Plant viruses use cellular factors and resources to replicate and move. Plants respond to viral infection by several mechanisms, including innate immunity, autophagy, and gene silencing, that viruses must evade or suppress. Thus, the establishment of infection is genetically determined by the availability of host factors necessary for virus replication and movement and by the balance between plant defense and viral suppression of defense responses.

View Article and Find Full Text PDF

Background: Maize lethal necrosis is caused by a synergistic co-infection of Maize chlorotic mottle virus (MCMV) and a specific member of the Potyviridae, such as Sugarcane mosaic virus (SCMV), Wheat streak mosaic virus (WSMV) or Johnson grass mosaic virus (JGMV). Typical maize lethal necrosis symptoms include severe yellowing and leaf drying from the edges. In Kenya, we detected plants showing typical and atypical symptoms.

View Article and Find Full Text PDF

Positive-strand RNA viruses replicate their genomes in membrane-bound replication compartments. Brome mosaic virus (BMV) replicates in vesicular invaginations of the endoplasmic reticulum membrane. BMV has served as a productive model system to study processes like virus-host interactions, RNA replication and recombination.

View Article and Find Full Text PDF

Plant viruses are inducers and targets of antiviral RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressor proteins that interfere with antiviral RNA silencing. The NSs protein is an RNA silencing suppressor in orthotospoviruses, such as the tomato spotted wilt virus (TSWV).

View Article and Find Full Text PDF

In addition to regulating gene expression, RNA silencing is an essential antiviral defense system in plants. Triggered by double-stranded RNA, silencing results in degradation or translational repression of target transcripts. Viruses are inducers and targets of RNA silencing.

View Article and Find Full Text PDF

Viral diseases of plants cause important economic losses due to reduction in crop quality and quantity to the point of threatening food security in some countries. Given the reduced availability of natural sources, genetic resistance to viruses has been successfully engineered for some plant-virus combinations. A sound understanding of the basic mechanisms governing plant-virus interactions, including antiviral RNA silencing, is the foundation to design better management strategies and biotechnological approaches to engineer and implement antiviral resistance in plants.

View Article and Find Full Text PDF

In eukaryotes, ARGONAUTE proteins (AGOs) associate with microRNAs (miRNAs), short interfering RNAs (siRNAs), and other classes of small RNAs to regulate target RNA or target loci. Viral infection in plants induces a potent and highly specific antiviral RNA silencing response characterized by the formation of virus-derived siRNAs. Arabidopsis thaliana has ten AGO genes of which AGO1, AGO2, and AGO7 have been shown to play roles in antiviral defense.

View Article and Find Full Text PDF