During genome duplication, replication forks (RFs) can be stalled by different obstacles or by depletion of replication factors or nucleotides. A limited number of histone post-translational modifications at stalled RFs are involved in RF protection and restart. Provided the recent observation that the SIN3A histone deacetylase complex reduces transcription-replication conflicts, we explore the role of the SIN3A complex in protecting RFs under stressed conditions.
View Article and Find Full Text PDFR-loops, which consist of a DNA-RNA hybrid and a displaced DNA strand, are known to threaten genome integrity. To counteract this, different mechanisms suppress R-loop accumulation by either preventing the hybridization of RNA with the DNA template (RNA biogenesis factors), unwinding the hybrid (DNA-RNA helicases), or degrading the RNA moiety of the R-loop (type H ribonucleases [RNases H]). Thus far, RNases H are the only nucleases known to cleave DNA-RNA hybrids.
View Article and Find Full Text PDFIntroduction: The Neurosurgery Education and Development (NED) Foundation (NEDF) started the development of local neurosurgical practice in Zanzibar (Tanzania) in 2008. More than a decade later, multiple actions with humanitarian purposes have significantly improved neurosurgical practice and education for physicians and nurses.
Research Question: To what extent could comprehensive interventions (beyond treating patients) be effective in developing global neurosurgery from the outset in low and middle-income countries?
Material And Method: A retrospective review of a 14- year period (2008-2022) of NEDF activities highlighting landmarks, projects, and evolving collaborations in Zanzibar was carried out.
Transcription in Saccharomyces cerevisiae is associated with elevated mutation and this partially reflects enhanced damage of the corresponding DNA. Spontaneous deamination of cytosine to uracil leads to CG>TA mutations that provide a strand-specific read-out of damage in strains that lack the ability to remove uracil from DNA. Using the CAN1 forward mutation reporter, we found that C>T and G>A mutations, which reflect deamination of the non-transcribed and transcribed DNA strands, respectively, occurred at similar rates under low-transcription conditions.
View Article and Find Full Text PDFUnscheduled R loops can be a source of genome instability, a hallmark of cancer cells. Although targeted proteomic approaches and cellular analysis of specific mutants have uncovered factors potentially involved in R-loop homeostasis, we report a more open screening of factors whose depletion causes R loops based on the ability of activation-induced cytidine deaminase (AID) to target R loops. Immunofluorescence analysis of γH2AX caused by small interfering RNAs (siRNAs) covering 3,205 protein-coding genes identifies 59 potential candidates, from which 13 are analyzed further and show a significant increase of R loops.
View Article and Find Full Text PDFReprod Biomed Online
March 2023
The stability of the genome is occasionally challenged by the formation of DNA-RNA hybrids and R-loops, which can be influenced by the chromatin context. This is mainly due to the fact that DNA-RNA hybrids hamper the progression of replication forks, leading to fork stalling and, ultimately, DNA breaks. Through a specific screening of chromatin modifiers performed in the yeast Saccharomyces cerevisiae, we have found that the Rtt109 histone acetyltransferase is involved in several steps of R-loop-metabolism and their associated genetic instability.
View Article and Find Full Text PDFPerturbation in the replication-stress response (RSR) and DNA-damage response (DDR) causes genomic instability. Genomic instability occurs in Wiskott-Aldrich syndrome (WAS), a primary immunodeficiency disorder, yet the mechanism remains largely uncharacterized. Replication protein A (RPA), a single-strand DNA (ssDNA) binding protein, has key roles in the RSR and DDR.
View Article and Find Full Text PDFDNA-RNA hybrids are required for several natural processes in the cell, such as replication and transcription. However, the misregulation of its metabolism is an important source of genetic instability, a hallmark of diseases including cancer. For this reason, genome-wide detection of DNA-RNA hybrids is becoming essential to identify new factors that play a role in its formation or resolution and to understand the global changes in its dynamics because of genetic alterations or chemical treatments.
View Article and Find Full Text PDFGenome instability is a condition characterized by the accumulation of genetic alterations and is a hallmark of cancer cells. To uncover new genes and cellular pathways affecting endogenous DNA damage and genome integrity, we exploited a Synthetic Genetic Array (SGA)-based screen in yeast. Among the positive genes, we identified VID22, reported to be involved in DNA double-strand break repair.
View Article and Find Full Text PDFHealthcare (Basel)
September 2021
Parkinson's Disease (PD) is a neurodegenerative disease in which non-motor symptoms may appear before motor phenomena, which include Impulse Control Disorders (ICDs). The objective of this study is to identify factors associated with the development of ICDs in PD. An analytical, cross-sectional study was conducted using clinical records from patients diagnosed with PD, both genders, from 40 to 80 years old.
View Article and Find Full Text PDFTranscription is an essential process of DNA metabolism, yet it makes DNA more susceptible to DNA damage. THSC/TREX-2 is a conserved eukaryotic protein complex with a key role in mRNP biogenesis and maturation that prevents genome instability. One source of such instability is linked to transcription, as shown in yeast and human cells, but the underlying mechanism and whether this link is universal is still unclear.
View Article and Find Full Text PDFIdentifying how R-loops are generated is crucial to know how transcription compromises genome integrity. We show by genome-wide analysis of conditional yeast mutants that the THO transcription complex, prevents R-loop formation in G1 and S-phase, whereas the Sen1 DNA-RNA helicase prevents them only in S-phase. Interestingly, damage accumulates asymmetrically downstream of the replication fork in sen1 cells but symmetrically in the hpr1 THO mutant.
View Article and Find Full Text PDFObjectives: To examine whether the educational level moderates the relationship between baseline depressive symptoms and cognitive functioning at 5- and 10-year follow-ups in older adults, considering the association between cognitive functioning and difficulty with activities of daily living (ADL).
Design: Using a prospective design, a path analysis was performed.
Setting: In-home, face-to-face interviews and self-administered questionnaires, within the National Social Life, Health, and Aging Project.
Habituation to ethnic ingroup members has been reported to be greater than to ethnic outgroup members. This pattern could be due to the lack of perceptive experience (familiarity) with outgroup facial morphs or, alternatively, to the prejudice held toward that outgroup. We explored this disjunctive in 71 participants, all Spanish, who were experimentally habituated to faces from their Ingroup and to faces from two unfamiliar outgroups, one for which there is low probability of prejudice in this population (Non-prejudiced Outgroup), and one for which the probability of prejudice is higher (Prejudiced Outgroup).
View Article and Find Full Text PDFDNA:RNA hybrids constitute a well-known source of recombinogenic DNA damage. The current literature is in agreement with DNA:RNA hybrids being produced co-transcriptionally by the invasion of the nascent RNA molecule produced in cis with its DNA template. However, it has also been suggested that recombinogenic DNA:RNA hybrids could be facilitated by the invasion of RNA molecules produced in trans in a Rad51-mediated reaction.
View Article and Find Full Text PDFExogenous attention allows the automatic detection of relevant stimuli and the reorientation of our current focus of attention towards them. Faces from an ethnic outgroup tend to capture exogenous attention to a greater extent than faces from an ethnic ingroup. We explored whether prejudice toward the outgroup, rather than lack of familiarity, is driving this effect.
View Article and Find Full Text PDFDespite playing physiological roles in specific situations, DNA-RNA hybrids threat genome integrity. To investigate how cells do counteract spontaneous DNA-RNA hybrids, here we screen an siRNA library covering 240 human DNA damage response (DDR) genes and select siRNAs causing DNA-RNA hybrid accumulation and a significant increase in hybrid-dependent DNA breakage. We identify post-replicative repair and DNA damage checkpoint factors, including those of the ATM/CHK2 and ATR/CHK1 pathways.
View Article and Find Full Text PDFAccurate meiotic chromosome segregation critically depends on the formation of inter-homolog crossovers initiated by double-strand breaks (DSBs). Inaccuracies in this process can drive aneuploidy and developmental defects, but how meiotic cells are protected from unscheduled DNA breaks remains unexplored. Here we define a checkpoint response to persistent meiotic DSBs in C.
View Article and Find Full Text PDFR loops are an important source of genome instability, largely due to their negative impact on replication progression. Yra1/ALY is an abundant RNA-binding factor conserved from yeast to humans and required for mRNA export, but its excess causes lethality and genome instability. Here, we show that, in addition to ssDNA and ssRNA, Yra1 binds RNA-DNA hybrids in vitro and, when artificially overexpressed, can be recruited to chromatin in an RNA-DNA hybrid-dependent manner, stabilizing R loops and converting them into replication obstacles in vivo.
View Article and Find Full Text PDFConflicts between replication and transcription machineries represent a major source of genomic instability and cells have evolved strategies to prevent such conflicts. However, little is known regarding how cells cope with sudden increases of transcription while replicating. Here, we report the existence of a general mechanism for the protection of genomic integrity upon transcriptional outbursts in S phase that is mediated by Mrc1.
View Article and Find Full Text PDFDNA-RNA hybrids form naturally during essential cellular functions such as transcription and replication. However, they may be an important source of genome instability, a hallmark of cancer and genetic diseases. Detection of DNA-RNA hybrids in cells is becoming crucial to understand an increasing number of molecular biology processes in genome dynamics and function and to identify new factors and mechanisms responsible for disease in biomedical research.
View Article and Find Full Text PDFR loops have positive physiological roles, but they can also be deleterious by causing genome instability, and the mechanisms for this are unknown. Here we identified yeast histone H3 and H4 mutations that facilitate R loops but do not cause instability. R loops containing single-stranded DNA (ssDNA), versus RNA-DNA hybrids alone, were demonstrated using ssDNA-specific human AID and bisulfite.
View Article and Find Full Text PDFExogenous attention is a set of mechanisms that allow us to detect and reorient toward salient events-such as appetitive or aversive-that appear out of the current focus of attention. The nature of these mechanisms, particularly the involvement of the parvocellular and magnocellular visual processing systems, was explored. Thirty-four participants performed a demanding digit categorization task while salient (spiders or S) and neutral (wheels or W) stimuli were presented as distractors under two figure-ground formats: heterochromatic/isoluminant (exclusively processed by the parvocellular system, Par trials) and isochromatic/heteroluminant (preferentially processed by the magnocellular system, Mag trials).
View Article and Find Full Text PDF