The use of ecofriendly natural minerals in photocatalytic processes to deal with the antimicrobial activity (AA) associated with antibiotics in aqueous systems is still incipient. Therefore, in this work, the capacity of a natural iron material (NIM) in photo-treatments, generating reactive species, to remove the antibiotic enrofloxacin and decrease its associated AA from water is presented. Initially, the fundamental composition, oxidation states, bandgap, point of zero charge, and morphological characteristics of the NIM were determined, denoting the NIM's feasibility for photocatalytic processes.
View Article and Find Full Text PDFThe cytochrome P450 family consists of ubiquitous monooxygenases with the potential to perform a wide variety of catalytic applications. Among the members of this family, CYP116B5hd shows a very prominent resistance to peracid damage, a property that makes it a promising tool for fine chemical synthesis using the peroxide shunt. In this meticulous study, we use hyperfine spectroscopy with a multifrequency approach (X- and Q-band) to characterize in detail the electronic structure of the heme iron of CYP116B5hd in the resting state, which provides structural details about its active site.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2022
The organometallic chemistry of 4d and 5d transition metals has been vastly dominated by closed-shell states. The reactivity of their metalloradical species is though remarkable, albeit yet poorly understood and with limited mechanistic investigations available. In this work we report the synthesis and characterization of two mononuclear Ir species, including the first dinitrogen adduct.
View Article and Find Full Text PDFThis paper documents the dataset obtained from the Electron Paramagnetic Resonance (EPR) study of the electronic properties of a self-sufficient cytochrome P450, CYP116B5hd, which possesses an interesting catalytic activity for synthetic purposes. In fact, when isolated, its heme domain can act as a peroxygenase on different substrates of biotechnological interest. Raw data shown in Famulari et al.
View Article and Find Full Text PDFCYP116B5 is a self-sufficient cytochrome P450 (CYP450) with interesting catalytic properties for synthetic purposes. When isolated, its heme domain can act as a peroxygenase on different substrates of biotechnological interest. Here, by means of continuous wave and advanced EPR techniques, the coordination environment of iron in the isolated CYP116B5 heme domain (CYP116b5hd) is characterized.
View Article and Find Full Text PDFChlorite dismutases (Clds) are heme b containing oxidoreductases able to decompose chlorite to chloride and molecular oxygen. This work analyses the impact of the distal, flexible and catalytic arginine on the binding of anionic angulate ligands like nitrite and the substrate chlorite. Dimeric Cld from Cyanothece sp.
View Article and Find Full Text PDFThe reactivity of the PGeP germylene 2,2'-bis(di-isopropylphosphanylmethyl)-5,5'-dimethyldipyrromethane-1,1'-diylgermanium(II), Ge(pyrmPiPr ) CMe , with late first-row transition metal (Fe-Zn) dichlorides has been investigated. All reactions led to PGeP pincer chloridogermyl complexes. The reactions with FeCl and CoCl afforded paramagnetic square planar complexes of formula [MCl{κ P,Ge,P-GeCl(pyrmPiPr ) CMe }] (M=Fe, Co).
View Article and Find Full Text PDFEngineering nitrogen fixation in eukaryotes requires high expression of functional nitrogenase structural proteins, a goal that has not yet been achieved. Here we build a knowledge-based library containing 32 nitrogenase nifH sequences from prokaryotes of diverse ecological niches and metabolic features and combine with rapid screening in tobacco to identify superior NifH variants for plant mitochondria expression. Three NifH variants outperform in tobacco mitochondria and are further tested in yeast.
View Article and Find Full Text PDFArch Biochem Biophys
May 2020
Electron Paramagnetic Resonance is a spectroscopic technique which, in combination with site-directed spin-labeling, provides structural and dynamic information about proteins in conditions similar to those of their physiological environment. The information is sequence-resolved, as it is based on probing the local dynamics of a paramagnetic label incorporated as a side chain of a selected amino acid. EPR does not impose a limit on the size of the protein or protein complex, as long as it is amenable to site-directed mutagenesis, and is able to obtain reliable distance distributions between two or more labels (identical or different).
View Article and Find Full Text PDFMechanical stability of epithelia requires firm attachment to the basement membrane via hemidesmosomes. Dysfunction of hemidesmosomal proteins causes severe skin-blistering diseases. Two plakins, plectin and BP230 (BPAG1e), link the integrin α6β4 to intermediate filaments in epidermal hemidesmosomes.
View Article and Find Full Text PDFThe photosynthetic cytochrome c from the marine diatom Phaeodactylum tricornutum has been purified and characterized. Cytochrome c is mostly obtained from the soluble cell extract in relatively large amounts. In addition, the protein appeared to be truncated in the last hydrophobic residues of the C-terminus, both in the soluble cytochrome c and in the protein extracted from the membrane fraction, as deduced by mass spectrometry analysis and the comparison with the gene sequence.
View Article and Find Full Text PDFEfficient energy transfer in the major light harvesting complex II (LHCII) of green plants is facilitated by the precise alignment of pigments due to the protein matrix they are bound to. Much is known about the import of the LHCII apoprotein into the chloroplast via the TOC/TIC system and its targeting to the thylakoid membrane but information is sparse about when and where the pigments are bound and how this is coordinated with protein folding. In vitro, the LHCII apoprotein spontaneously folds and binds its pigments if the detergent-solubilized protein is combined with a mixture of chlorophylls a and b and carotenoids.
View Article and Find Full Text PDFCharacterization by electron paramagnetic resonance techniques of several variants of Anabaena flavodoxin, where the naturally occurring FMN cofactor is substituted by different analogs, makes it possible to improve the details of the spin distribution map in the isoallosazine ring in its semiquinone state. The analyzed variants were selected to monitor the effects of intrinsic changes in the flavin ring electronic structure, as well as perturbations in the apoflavodoxin-flavin interaction, on the spin populations. When these effects were analyzed together with the functional properties of the different flavodoxin variants, a relationship between spin population and biochemical parameters, as the reduction potential, could be envisaged.
View Article and Find Full Text PDFIntravascular hemolysis can result in hemoglobinuria with acute kidney injury. In this study we systematically explored two in vivo animal models and a related cell culture system to identify hemoglobinuria-triggered damage pathways. In models of stored blood transfusion and hemoglobin (Hb) exposure in guinea pigs and beagle dogs we found that hemoglobinuria led to intrarenal conversion of ferrous Hb(Fe(2+)) to ferric Hb(Fe(3+)), accumulation of free heme and Hb-cross-linking products, enhanced 4-hydroxynonenal reactivity in renal tissue, and acute tubule injury.
View Article and Find Full Text PDFPlectin and BPAG1e belong to the plakin family of high-molecular-weight proteins that interconnect the cytoskeletal systems and anchor them to junctional complexes. Plectin and BPAG1e are prototypical plakins with a similar tripartite modular structure. The N- and C-terminal regions are built of multiple discrete structural domains, while the central rod domain mediates dimerization by coiled-coil interactions.
View Article and Find Full Text PDFAm J Respir Crit Care Med
May 2016
Rationale: Hemolysis occurs not only in conditions such as sickle cell disease and malaria but also during transfusion of stored blood, extracorporeal circulation, and sepsis. Cell-free Hb depletes nitric oxide (NO) in the vasculature, causing vasoconstriction and eventually cardiovascular complications. We hypothesize that Hb-binding proteins may preserve vascular NO signaling during hemolysis.
View Article and Find Full Text PDFEnzymes and cofactors with iron-sulfur heterocubane core structures, [Fe4 S4 ], are often found in nature as electron transfer reagents in fundamental catalytic transformations. An artificial heterocubane with a [Fe4 N4 ] core is reported that can reversibly store up to four electrons at very negative potentials. The neutral [Fe4 N4 ] and the singly reduced low-valent [Fe4 N4 ](-) heterocubanes were isolated and fully characterized.
View Article and Find Full Text PDFExtracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
April 2015
Integrin α6β4 is a major component of hemidesmosomes that mediate the stable anchorage of epithelial cells to the underlying basement membrane. Integrin α6β4 has also been implicated in cell proliferation and migration and in carcinoma progression. The third and fourth fibronectin type III domains (FnIII-3,4) of integrin β4 mediate binding to the hemidesmosomal proteins BPAG1e and BPAG2, and participate in signalling.
View Article and Find Full Text PDFMagnetotactic bacteria (MTB) build magnetic nanoparticles in chain configuration to generate a permanent dipole in their cells as a tool to sense the Earth's magnetic field for navigation toward favorable habitats. The majority of known MTB align their nanoparticles along the magnetic easy axes so that the directions of the uniaxial symmetry and of the magnetocrystalline anisotropy coincide. Desulfovibrio magneticus sp.
View Article and Find Full Text PDFIn this contribution we present the study of the thermal dependence of the ENDOR spectra of flavodoxin at low temperatures which reveals the dynamics of the methyl groups bound to the flavin moiety in flavoproteins. The methyl groups behave as quantum rotors locked by a deep rotational well and undergoing a tunneling process. At room temperature, methyl rotors are locked and the hopping motion is slow.
View Article and Find Full Text PDFPolymer-clay nanocomposites (PCNCs) containing either a rubber or an acrylate polymer were prepared by drying or co-precipitating polymer latex and nanolayered clay (synthetic and natural) suspensions. The interface between the polymer and the clay nanoparticles was studied by electron paramagnetic resonance (EPR) techniques by selectively addressing spin probes either to the surfactant layer (labeled stearic acid) or the clay surface (labeled catamine). Continuous-wave (CW) EPR studies of the surfactant dynamics allow to define a transition temperature * which was tentatively assigned to the order-disorder transition of the surfactant layer.
View Article and Find Full Text PDFWe report the use of S-band ferromagnetic resonance (FMR) spectroscopy to compare the anisotropic properties of magnetite particles in chains of cultured intact magnetotactic bacteria (MTB) between 300 and 15 K with those of sediment samples of Holocene age in order to infer the presence of magnetofossils and their preservation in a geological time frame. The spectrum of intact MTB at 300 K exhibits distinct uniaxial anisotropy because of the chain alignment of the cellular magnetite particles and their easy axes. This anisotropy becomes less pronounced upon cooling and below the Verwey transition (T(V)) it is nearly vanished mainly owing to the change of direction of the easy axes.
View Article and Find Full Text PDFThe homoleptic, square pyramidal organochromium(III) compound [NBu(4)](2)[Cr(C(6)F(5))(5)] (1) reacts with excess organic isocyanides, CNR [R = (t)Bu, 2,6-dimethylphenyl (Xy)], under dissociation of the apical C(6)F(5) ligand to give the more saturated, singly charged complexes [NBu(4)][trans-Cr(C(6)F(5))(4)(CNR)(2)] [R = (t)Bu (2), Xy (3)], containing six monodentate C-donor ligands. These compounds exhibit an axially distorted octahedral structure (single-crystal X-ray diffraction) with the four C(6)F(5) groups defining the equatorial positions and the CNR ligands occupying the axial ones. Compounds 2 and 3 both behave as spin quartet species (S = 3/2) at microscopic level (EPR spectroscopy), their macroscopic magnetic properties depending upon the nature of the terminal R group, as established by magnetisation measurements.
View Article and Find Full Text PDFMagnetotactic bacteria benefit from their ability to form cellular magnetic dipoles by assembling stable single-domain ferromagnetic particles in chains as a means to navigate along Earth's magnetic field lines on their way to favorable habitats. We studied the assembly of nanosized membrane-encapsulated magnetite particles (magnetosomes) by ferromagnetic resonance spectroscopy using Magnetospirillum gryphiswaldense cultured in a time-resolved experimental setting. The spectroscopic data show that 1), magnetic particle growth is not synchronized; 2), the increase in particle numbers is insufficient to build up cellular magnetic dipoles; and 3), dipoles of assembled magnetosome blocks occur when the first magnetite particles reach a stable single-domain state.
View Article and Find Full Text PDF