Proprioceptive input is essential for coordinated locomotion and this input must be properly gated to ensure smooth and effective movement. Presynaptic inhibition mediated by GABAergic interneurons provides regulation of sensory afferent feedback. Serotonin not only promotes locomotion, but also modulates feedback from sensory afferents, both directly and indirectly, potentially by acting on the GABAergic interneurons that mediate presynaptic inhibition.
View Article and Find Full Text PDFSpinal circuitry produces the rhythm and patterning of locomotion. However, both descending and sensory inputs are required to initiate and adapt locomotion to the environment. Spinal cord injury (SCI) disrupts descending controls of the spinal cord, producing paralysis.
View Article and Find Full Text PDFSpinal cord neurons integrate sensory and descending information to produce motor output. The expression of transcription factors has been used to dissect out the neuronal components of circuits underlying behaviors. However, most of the canonical populations of interneurons are heterogeneous and require additional criteria to determine functional subpopulations.
View Article and Find Full Text PDFNeural circuitry generating locomotor rhythm and pattern is located in the spinal cord. Most spinal cord injuries (SCIs) occur above the level of spinal locomotor neurons; therefore, these circuits are a target for improving motor function after SCI. Despite being relatively intact below the injury, locomotor circuitry undergoes substantial plasticity with the loss of descending control.
View Article and Find Full Text PDFSomatosensory input strength can be modulated by primary afferent depolarization (PAD) generated predominantly via presynaptic GABA receptors on afferent terminals. We investigated whether ionotropic nicotinic acetylcholine receptors (nAChRs) also provide modulatory actions, focusing on myelinated afferent excitability in in vitro murine spinal cord nerve-attached models. Primary afferent stimulation-evoked synaptic transmission was recorded in the deep dorsal horn as extracellular field potentials (EFPs), whereas concurrently recorded dorsal root potentials (DRPs) were used as an indirect measure of PAD.
View Article and Find Full Text PDFSensory information arising from limb movements controls the spinal locomotor circuitry to adapt the motor pattern to demands of the environment. Stimulation of extensor group (gr) I afferents during fictive locomotion in decerebrate cats prolongs the ongoing extension, and terminates ongoing flexion with an initiation of the subsequent extension, i. e.
View Article and Find Full Text PDFCentral pattern generators (CPGs) in the thoracolumbar spinal cord generate the basic hindlimb locomotor pattern. The locomotor CPG integrates descending commands and sensory information from the periphery to activate, modulate and halt the rhythmic program. General CPG function and response to sensory perturbations are well described in cat and rat models.
View Article and Find Full Text PDFSpontaneous rupture of the spleen is a rare clinical condition that usually presents as a complication of a background pathology and can become a life-threatening condition if it is not diagnosed in time. We present the case of a 15-year-old girl with abdominal pain and clinical data of hypovolemic shock. The simple tomographic study revealed deformation of the splenic architecture and hemoperitoneum.
View Article and Find Full Text PDFIn order to optimize the identification of molds with MALDI-TOF MS, three protein extraction-methodologies were evaluated against 44 isolates: water extraction (WE), zirconium extraction (ZE) and the provider's recommended method (PRM). Two data bases were compared, Bruker (BK) and Bruker+National Institutes of Health. Considering both databases, results were respectively as follows: correct identification (CI) at gender level, 10 and 16 by WE; 27 and 32 by ZE and 18 and 23 by PRM; CI at species level, 5 and 7 by WE; 17 and 20 by ZE and 11 and 14 by PRM; non-reliable identification, 18 and 12 by WE; 9 and 4 by ZE and by PRM.
View Article and Find Full Text PDFGain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD). PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain.
View Article and Find Full Text PDFRev Argent Microbiol
February 2011
Doripenem, a new carbapenem, has shown to be more active against Pseudomonas aeruginosa than other carbapenems. The activity of doripenem, imipenem and meropenem was evaluated against 93 P. aeruginosa isolates, by agar dilution and disk diffusion methods.
View Article and Find Full Text PDF