Many microorganisms feed on the tissue and recalcitrant bone materials from dead animals, however little is known about the collaborative effort and characteristics of their enzymes. In this study, microbial metagenomes from symbionts of the marine bone-dwelling worm , and from microbial biofilms growing on experimentally deployed bone surfaces were screened for specialized bone-degrading enzymes. A total of 2,043 taxonomically (closest match within 40 phyla) and functionally (1 proteolytic and 9 glycohydrolytic activities) diverse and non-redundant sequences (median pairwise identity of 23.
View Article and Find Full Text PDFTo support the bio-based industry in development of environment-friendly processes and products, an optimal toolbox of biocatalysts is key. Although functional screen of (meta)genomic libraries may potentially contribute to identifying new enzymes, the discovery of new enzymes meeting industry compliance demands is still challenging. This is particularly noticeable in the case of proteases, for which the reports of metagenome-derived proteases with industrial applicability are surprisingly limited.
View Article and Find Full Text PDFThe marine bone biome is a complex assemblage of macro- and microorganisms; however, the enzymatic repertoire to access bone-derived nutrients remains unknown. The bone matrix is a composite material made up mainly of organic collagen and inorganic hydroxyapatite. We conducted field experiments to study microbial assemblages that can use organic bone components as nutrient source.
View Article and Find Full Text PDFSince its discovery as part of the bacterial adaptative immune system, CRISPR/Cas has emerged as the most promising tool for targeted genome editing over the past few years. Various tools for genome editing in have recently been developed, expanding and simplifying its potential development as an industrial species. A collection of vectors compatible with high-throughput (HTP) fragment exchange (FX) cloning for heterologous expression in and was previously developed.
View Article and Find Full Text PDFAerobic moderately thermophilic and thermophilic methane-oxidizing bacteria make a substantial contribution in the control of global warming through biological reduction of methane emissions and have a unique capability of utilizing methane as their sole carbon and energy source. Here, we report a novel moderately thermophilic -like Type Ib methanotroph recovered from an alkaline thermal spring (55.4 °C and pH 8.
View Article and Find Full Text PDFEukarya have been discovered in the deep subsurface at several locations in South Africa, but how organisms reach the subsurface remains unknown. We studied river-subsurface fissure water systems and identified Eukarya from a river that are genetically identical for 18S rDNA. To further confirm that these are identical species one metazoan species recovered from the overlying river interbred successfully with specimen recovered from an underlying mine at -1.
View Article and Find Full Text PDFAmination of bulky ketones, particularly in () configuration, is an attractive chemical conversion; however, known ω-transaminases (ω-TAs) show insufficient levels of performance. By applying two screening methods, we discovered 10 amine transaminases from the class III ω-TA family that were 38% to 76% identical to homologues. We present examples of such enzymes preferring bulky ketones over keto acids and aldehydes with stringent () selectivity.
View Article and Find Full Text PDFIntracellular subtilisin proteases (ISPs) have important roles in protein processing during the stationary phase in bacteria. Their unregulated protein degrading activity may have adverse effects inside a cell, but little is known about their regulatory mechanism. Until now, ISPs have mostly been described from Bacillus species, with structural data from a single homolog.
View Article and Find Full Text PDFThe microbial diversity associated with diffuse venting deep-sea hydrothermal deposits is tightly coupled to the geochemistry of the hydrothermal fluids. Previous 16S rRNA gene amplicon sequencing (metabarcoding) of marine iron-hydroxide deposits along the Arctic Mid Ocean Ridge, revealed the presence of diverse bacterial communities associated with these deposits (Storesund and Øvreås in Antonie van Leeuwenhoek 104:569-584, 2013). One of the most abundant and diverse phyla detected was the enigmatic Planctomycetes.
View Article and Find Full Text PDFEsterases receive special attention because of their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases' substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function.
View Article and Find Full Text PDFThe Iberian Pyrite Belt, located in Southwestern Spain, represents one of the world's largest accumulations of mine wastes and acid mine drainages. This study reports the comparative microbial ecology of the water column of Nuestra Señora del Carmen acid pit lake with the extreme acidic Río Tinto basin. The canonical correspondence analysis identified members of the Leptospirillum, Acidiphilium, Metallibacterium, Acidithiobacillus, Ferrimicrobium and Acidisphaera genera as the most representative microorganisms of both ecosystems.
View Article and Find Full Text PDFSvalbard, situated in the high Arctic, is an important past and present coal mining area. Dozens of abandoned waste rock piles can be found in the proximity of Longyearbyen. This environment offers a unique opportunity for studying the biological control over the weathering of sulphide rocks at low temperatures.
View Article and Find Full Text PDFIn the South African deep mines, a variety of biofilms growing in mine corridor walls as water seeps from intersections or from fractures represents excellent proxies for deep-subsurface environments. However, they may be greatly affected by the oxygen inputs through the galleries of mining activities. As a consequence, the interaction between the anaerobic water coming out from the walls with the oxygen inputs creates new conditions that support rich microbial communities.
View Article and Find Full Text PDFDue to its highly metalliferous waters and low pH, the Rio Tinto has shown its potential for modelling both acid mine drainage systems and biohydrometallurgical operations. Most geomicrobiological studies of these systems have focused on the oxic water column. A sequence-based approach in combination with in situ detection techniques enabled us to examine the composition and structure of the microbial communities associated with the suboxic and anoxic sediments along the river course and to compare them with the planktonic communities inhabiting the water column.
View Article and Find Full Text PDFThe recent geomicrobiological characterization of Río Tinto, Iberian Pyrite Belt (IPB), has proven the importance of the iron cycle, not only in generating the extreme conditions of the habitat (low pH, high concentration of toxic heavy metals) but also in maintaining the high level of microbial diversity, both prokaryotic and eukaryotic, detected in the water column and the sediments. The extreme conditions of the Tinto basin are not the product of industrial contamination but the consequence of the presence of an underground bioreactor that obtains its energy from the massive sulfide minerals of the IPB. To test this hypothesis, a drilling project was carried out to intersect ground waters that interact with the mineral ore in order to provide evidence of subsurface microbial activities and the potential resources to support these activities.
View Article and Find Full Text PDFSince its discovery over two decades ago, the deep subsurface biosphere has been considered to be the realm of single-cell organisms, extending over three kilometres into the Earth's crust and comprising a significant fraction of the global biosphere. The constraints of temperature, energy, dioxygen and space seemed to preclude the possibility of more-complex, multicellular organisms from surviving at these depths. Here we report species of the phylum Nematoda that have been detected in or recovered from 0.
View Article and Find Full Text PDFAn oligonucleotide microarray that monitors prokaryotic diversity in extremely acidic environments has been developed. The oligonucleotide probes target most known acidophilic microorganisms, including members of the Nitrospira phylum, Acidithiobacillus genus, acidobacteria, sulfur reducing bacteria, Actinobacteria and Archaea of the Ferroplasma and Thermoplasma genera. The probes were tested for their specificity against the corresponding type strain by microarray hybridization using PCR-amplified fluorescent DNA of the 16S rRNA genes.
View Article and Find Full Text PDFThe prokaryotic diversity of macroscopic filaments located at the water surface in an extreme acidic environment, Río Tinto (SW, Spain), has been analysed through denaturing gradient gel electrophoresis (DGGE), cloning of 16S rRNA genes and fluorescence in situ hybridization (FISH). The dominant species present in the macrofilaments were Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans and Acidiphilium spp., which represented the three main bacterial genera found in the water column of the river.
View Article and Find Full Text PDF