Publications by authors named "Garcia-Lopez V"

Two-dimensional organic-inorganic (2DOI) van der Waals hybrids (vdWhs) have emerged as a groundbreaking subclass of layer-stacked (opto-)electronic materials. The development of 2DOI-vdWhs via systematically integrating inorganic 2D layers with organic 2D crystals at the molecular/atomic scale extends the capabilities of traditional 2D inorganic vdWhs, thanks to their high synthetic flexibility and structural tunability. Constructing an organic-inorganic hybrid interface with atomic precision will unlock new opportunities for generating unique interfacial (opto-)electronic transport properties by combining the strengths of organic and inorganic layers, thus allowing us to satisfy the growing demand for multifunctional applications.

View Article and Find Full Text PDF

Rotaxanes equipped with actuators hold great potential for developing highly functional molecular machines. Such systems could significantly enhance our ability to study and manipulate biological and artificial membranes. Here, we introduce a rotaxane with a ring featuring two azobenzene photoswitches, which retain their photoreversibility and can be stochastically shuttled along the axle in solution.

View Article and Find Full Text PDF

We report the synthesis of two rotaxanes (1 and 2) whose rings have appended thiourea units for the selective recognition of Cl anions. Rotaxane 1 transports Cl across synthetic lipid bilayers more efficiently than 2, exhibiting EC values of 0.243 mol% 0.

View Article and Find Full Text PDF

By reacting a 3,6-ditriazolyl-2,5-dihydroxybenzoquinone (HtrzAn) anilato linker with Ln ions (Ln = Dy, Tb, Ho), two different series of polymorphs, formulated as [Ln(trzAn)(HO)] ·10HO (Dy, 1a; Tb, 2a, Ho, 3a) and [Ln(trzAn)(HO)] ·7HO (Dy, 1b, Tb, 2b, Ho, 3b) have been obtained. In these series the two Dy-coordination networks (1a and 1b) and the Tb-coordination polymer (2b) show a Single Ion Magnet (SIM) behavior. 1-3a MOFs show reversible structural flexibility upon removal of a coordinated water molecule from a distorted hexagonal 2D framework to a distorted 3,6-brickwall rectangular 3D structure in [Ln(trzAn)(HO)] ·2HO (Dy, 1a_des; Tb, 2a_des, Ho, 3a_des) involving shrinkage/expansion of the hexagonal-rectangular networks.

View Article and Find Full Text PDF

Many cellular processes are governed by protein-protein interactions that require tight spatial and temporal regulation. Accordingly, it is necessary to understand the dynamics of these interactions to fully comprehend and elucidate cellular processes and pathological disease states. To map de novo protein-protein interactions with time resolution at an organelle-wide scale, we developed a quantitative mass spectrometry method, time-resolved interactome profiling (TRIP).

View Article and Find Full Text PDF

A large diversity of epigenetic factors, such as microRNAs and histones modifications, are known to be capable of regulating gene expression without altering DNA sequence itself. In particular, miR-1 is considered the first essential microRNA in cardiac development. In this study, miR-1 potential role in early cardiac chamber differentiation was analyzed through specific signaling pathways.

View Article and Find Full Text PDF

The preparation of Fe(II) complexes combining monodentate NCX (X = S or Se) and the tetradentate Schiff base chiral ligands -L and -L = (- or -L = 1,2 or 1,2)-,-bis(pyridin-2-ylmethylen)cyclohexane-1,2-diamine in acetone results in an unexpected reaction. Thus, four enantiomerically pure compounds of formulas [Fe(-L)(NCX)] and [Fe(-L)(NCX)] (X = S or Se) are formed by the new asymmetrical ligand L. In L, one acetone solvent molecule is incorporated into the ligand forming a bond with the C atom of one of the two CN imine groups of L, which is transformed into an amine (Mannich reaction).

View Article and Find Full Text PDF

Introduction: Diffuse interstitial lung disease (ILD) describes a broad group of pulmonary inflammatory and fibrosis disorders. Asbestosis and silicosis are the main causes linked to occupational exposure. The aim of this study was to estimate the proportion of cases with possible occupational origin and describe their exposure, clinical, and occupational status.

View Article and Find Full Text PDF

Kaempferol, a flavonoid present in many food products, has chemical and cellular antioxidant properties that are beneficial for protection against the oxidative stress caused by reactive oxygen and nitrogen species. Kaempferol administration to model experimental animals can provide extensive protection against brain damage of the and proximal cortical areas induced by transient brain cerebral ischemic stroke and by 3-nitropropionic acid. This article is an updated review of the molecular and cellular mechanisms of protection by kaempferol administration against brain damage induced by these insults, integrated with an overview of the contributions of the work performed in our laboratories during the past years.

View Article and Find Full Text PDF

Molecular motors (MM) are molecular machines, or nanomachines, that rotate unidirectionally upon photostimulation and perform mechanical work on their environment. In the last several years, it has been shown that the photomechanical action of MM can be used to permeabilize lipid bilayers, thereby killing cancer cells and pathogenic microorganisms and controlling cell signaling. The work contributes to a growing acknowledgement that the molecular actuation characteristic of these systems is useful for various applications in biology.

View Article and Find Full Text PDF

The embryonic epicardium originates from the proepicardium, an extracardiac primordium constituted by a cluster of mesothelial cells. In early embryos, the embryonic epicardium is characterized by a squamous cell epithelium resting on the myocardium surface. Subsequently, it invades the subepicardial space and thereafter the embryonic myocardium by means of an epithelial-mesenchymal transition.

View Article and Find Full Text PDF

There is a pressing need for more precise biomarkers of chronic kidney disease (CKD). Plasma samples from 820 subjects [231 with CKD, 325 with end-stage kidney disease (ESKD) and 264 controls] were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS) to determine a metabolic profile of 28 amino acids (AAs) and biogenic amines to test their value as markers of CKD risk and progression. The kynurenine/tryptophan ratio showed the strongest correlation with estimated glomerular filtration rate values (coefficient = -0.

View Article and Find Full Text PDF

Objective: To determine if the systemic immune-inflammation index (SII) is a prognostic marker of mortality in COVID-19 patients.

Method: Retrospective study that included patients admitted to a general hospital in Mexico City with diagnostic of COVID-19, confirmed by quantitative polymerase chain reaction from nasopharyngeal swab specimens in addition to characteristic symptomatology and computerized thoracic tomography imaging. Upon admission an hematic biometry was taken to calculate the SII (neutrophils × platelets/lymphocytes).

View Article and Find Full Text PDF

Background: The World Health Organisation (WHO) calls on stakeholders to give Higher Education a key educational importance for the future of Europe. Within the content of the training programmes at university, sexuality emerges as a relevant topic in the nursing degree, to promote integral health from a holistic perspective. However, research on the presence of sexuality at the curricular level in Higher Education suggests that it is incomplete and underdeveloped.

View Article and Find Full Text PDF

Collagen is one the most abundant proteins and the main cargo of the secretory pathway, contributing to hepatic fibrosis and cirrhosis due to excessive deposition of extracellular matrix. Here we investigated the possible contribution of the unfolded protein response, the main adaptive pathway that monitors and adjusts the protein production capacity at the endoplasmic reticulum, to collagen biogenesis and liver disease. Genetic ablation of the ER stress sensor IRE1 reduced liver damage and diminished collagen deposition in models of liver fibrosis triggered by carbon tetrachloride (CCl ) administration or by high fat diet.

View Article and Find Full Text PDF

Three solvatomorphs of the iron(II) complex of 2,6-di[4-(ethylcarboxy)pyrazol-1-yl]pyridine (bpCOOEtp) of formulas [Fe(bpCOOEtp)](ClO)·1.5MeNO (), [Fe(bpCOOEtp)](ClO)·MeNO (), and [Fe(bpCOOEtp)](ClO)·2MeNO () have been prepared and characterized. They show interesting spin-crossover (SCO) properties ranging from partial to complete thermal spin transitions and a light-induced excited spin-state trapping (LIESST) effect.

View Article and Find Full Text PDF

Ocular neurodegenerative diseases such as glaucoma, diabetic retinopathy, and age-related macular degeneration are common retinal diseases responsible for most of the blindness causes in the working-age and elderly populations in developed countries. Many of the current treatments used in these pathologies fail to stop or slow the progression of the disease. Therefore, other types of treatments with neuroprotective characteristics may be necessary to allow a more satisfactory management of the disease.

View Article and Find Full Text PDF

A bifunctionalized polyoxometalate (POM), [VO(CHNO)], which contains a redox active hexavanadate moiety covalently linked to two tridentate 2,6-bis(pyrazol-1-yl)pyridine (1-bpp) ligands, has been prepared and characterized. Reaction of this hybrid molecule with Fe(ii) or Zn(ii) ions produces crystalline neutral 1D networks of formula Fe[VO(CHNO)]·solv (2) and Zn[VO(CHNO)]·solv (3) (solv = solvent molecules). Magnetic properties of 2 show an abrupt spin-crossover (SCO) with the temperature, which can be induced by light irradiation at 10 K (Light-Induced Excited Spin-State Trapping, LIESST effect).

View Article and Find Full Text PDF

Understanding the directed motion of a single molecule on surfaces is not only important in the well-established field of heterogeneous catalysis but also for the design of artificial nanoarchitectures and molecular machines. Here, we report how the tip of a scanning tunneling microscope (STM) can be used to control the translation direction of a single polar molecule. Through the interaction of the molecular dipole with the electric field of the STM junction, it was found that both translations and rotations of the molecule occur.

View Article and Find Full Text PDF

Building nanostructures one-by-one requires precise control of single molecules over many manipulation steps. The ideal scenario for machine learning algorithms is complex, repetitive, and time-consuming. Here, we show a reinforcement learning algorithm that learns how to control a single dipolar molecule in the electric field of a scanning tunneling microscope.

View Article and Find Full Text PDF

An understanding of the rotary cycle of molecular motors (MMs), a key component of an approach to opening cells using mechanical motion, is important in furthering the research. Nuclear magnetic resonance (NMR) spectroscopy was used for analysis of illuminated light-active MMs. We found that the presence of a ,-dimethylethylenediamine in a position conjugated to the central olefin results in changes to the rotation of a second-generation Feringa-type MM.

View Article and Find Full Text PDF

Heart failure constitutes a clinical complex syndrome with different symptomatic characteristics depending on age, sex, race and ethnicity, among others, which has become a major public health issue with an increasing prevalence. One of the most interesting tools seeking to improve prevention, diagnosis, treatment and prognosis of this pathology has focused on finding new molecular biomarkers since heart failure relies on deficient cardiac homeostasis, which is regulated by a strict gene expression. Therefore, currently, analyses of non-coding RNA transcriptomics have been oriented towards human samples.

View Article and Find Full Text PDF

Antibiotic resistance is a growing health threat. There is an urgent and critical need to develop new antimicrobial modalities and therapies. Here, a set of hemithioindigo (HTI)-based molecular machines capable of specifically killing Gram-positive bacteria within minutes of activation with visible light (455 nm at 65 mW cm ) that are safe for mammalian cells is described.

View Article and Find Full Text PDF

Various treatments based on drug administration and radiotherapy have been devoted to preventing, palliating, and defeating cancer, showing high efficiency against the progression of this disease. Recently, in this process, malignant cells have been found which are capable of triggering specific molecular mechanisms against current treatments, with negative consequences in the prognosis of the disease. It is therefore fundamental to understand the underlying mechanisms, including the genes-and their signaling pathway regulators-involved in the process, in order to fight tumor cells.

View Article and Find Full Text PDF