Objective: Increased Fibroblast Growth Factor-21 (FGF-21) circulating levels have been described in obesity. In this observational study, we analysed a group of subjects with metabolic disorders to unravel the putative link between visceral adiposity and FGF-21 serum levels.
Methods: Total and intact serum FGF-21 concentration was measured with an ELISA assay respectively in 51 and 46 subjects, comparing FGF-21 levels in dysmetabolic conditions.
Nonalcoholic fatty liver disease (NAFLD) is defined by a set of hepatic conditions ranging from steatosis to steatohepatitis (NASH), characterized by inflammation and fibrosis, eventually predisposing to hepatocellular carcinoma (HCC). Together with fatty acids (FAs) originated from adipose lipolysis and hepatic lipogenesis, intestinal-derived FAs are major contributors of steatosis. However, the role of mono-unsaturated FAs (MUFAs) in NAFLD development is still debated.
View Article and Find Full Text PDFCompelling evidence support an involvement of oxidative stress and intestinal inflammation as early events in the predisposition and development of obesity and its related comorbidities. Here, we show that deficiency of the major mitochondrial antioxidant enzyme superoxide dismutase 2 (SOD2) in the gastrointestinal tract drives spontaneous obesity. Intestinal epithelium-specific ablation in mice induced adiposity and inflammation via phospholipase A2 (PLA2) activation and increased release of omega-6 polyunsaturated fatty acid arachidonic acid.
View Article and Find Full Text PDFThe nuclear receptor farnesoid X receptor (FXR) is the master regulator of bile acids (BAs) homeostasis since it transcriptionally drives modulation of BA synthesis, influx, efflux, and detoxification along the enterohepatic axis. Due to its crucial role, FXR alterations are involved in the progression of a plethora of BAs associated inflammatory disorders in the liver and in the gut. The involvement of the FXR pathway in cholestasis development and management has been elucidated so far with a direct role of FXR activating therapy in this condition.
View Article and Find Full Text PDFDiet and lifestyle habits have a profound impact on the pathophysiology of many diseases. Colorectal cancer (CRC) is the third most common cancer worldwide and its etiology is strongly influenced by nutrition and high fat/high carbohydrate Western-style diet. Human epidemiological and animal studies have shown that colonic cancer risk is also related to faecal bile acid concentration.
View Article and Find Full Text PDFDuring conditions of impaired bile flow (cholestasis), increased serum bile acids (BAs) are prognostic markers of sepsis. In this issue, Hao et al. (2017) show that the BA receptor FXR binds NLRP3 inflammasome in macrophages and inhibits activation of inflammasome components, thus reducing endotoxemia in cholestasis.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) is a chronic multifactorial inflammatory disorder characterized by periods of activation and remission of intestinal inflammation, with potentially severe complications, that can lead to mortality. Experimental animal models of intestinal inflammation are crucial for understanding the pathogenesis of Crohn's disease (CD) and ulcerative colitis (UC), the two major human IBD phenotypes. Animal models have been instrumental in unveiling the molecular background of IBD, and although a single model is not able to capture the complexity of this disease, each of them provided valuable insight into its different aspects.
View Article and Find Full Text PDFUnlabelled: In cirrhosis, increased intrahepatic vascular resistance (IHVR) is the primary factor for portal hypertension (PH) development. Hepatic stellate cells (HSCs) play a major role increasing IHVR because, when activated, they are contractile and promote fibrogenesis. Protease-activated receptors (PARs) can activate HSCs through thrombin and factor Xa, which are known PAR agonists, and cause microthrombosis in liver microcirculation.
View Article and Find Full Text PDFResisting death is a central hallmark of cancer cells. Tumors rely on a number of genetic mechanisms to avoid apoptosis, and alterations in mRNA alternative splicing are increasingly recognized to have a role in tumorigenesis. In this study, we identify the splicing regulator SLU7 as an essential factor for the preservation of hepatocellular carcinoma (HCC) cells viability.
View Article and Find Full Text PDFBackground & Aims: Increased hepatic vascular resistance due to fibrosis and elevated hepatic vascular tone is the primary factor in the development of portal hypertension. Heparin may decrease fibrosis by inhibiting intrahepatic microthrombosis and thrombin-mediated hepatic stellate cell activation. In addition, heparin enhances eNOS activity, which may reduce hepatic vascular tone.
View Article and Find Full Text PDFUnlabelled: Matrix metalloproteinases (MMPs) participate in tissue repair after acute injury, but also participate in cancer by promoting a protumorigenic microenvironment. Previously, we reported on a key role for MMP10 in mouse liver regeneration. Herein, we investigated MMP10 expression and function in human hepatocellular carcinoma (HCC) and diethylnitrosamine (DEN)-induced mouse hepatocarcinogenesis.
View Article and Find Full Text PDFFibroblast growth factor 15 (FGF15), FGF19 in humans, is a gut-derived hormone and a key regulator of bile acids and carbohydrate metabolism. FGF15 also participates in liver regeneration after partial hepatectomy inducing hepatocellular proliferation. FGF19 is overexpressed in a significant proportion of human hepatocellular carcinomas (HCC), and activation of its receptor FGFR4 promotes HCC cell growth.
View Article and Find Full Text PDFA precise equilibrium between cellular differentiation and proliferation is fundamental for tissue homeostasis. Maintaining this balance is particularly important for the liver, a highly differentiated organ with systemic metabolic functions that is endowed with unparalleled regenerative potential. Carcinogenesis in the liver develops as the result of hepatocellular de-differentiation and uncontrolled proliferation.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is a molecularly complex tumor that is resistant to standard and targeted therapies, and thus a deadly disease. In this context, the identification of key alterations driving HCC development is therefore essential. The implementation of next-generation sequencing techniques has underscored earlier realizations of the marked dysregulation of pre-mRNA splicing in HCC.
View Article and Find Full Text PDFBackground & Aims: Upon tissue injury, the liver mounts a potent reparative and regenerative response. A role for proteases, including serine and matrix metalloproteinases (MMPs), in this process is increasingly recognized. We have evaluated the expression and function of MMP10 (stromelysin-2) in liver wound healing and regeneration.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is the most prevalent liver tumor and a deadly disease with limited therapeutic options. Dysregulation of cell signaling pathways is a common denominator in tumorigenesis, including hepatocarcinogenesis. The epidermal growth factor receptor (EGFR) signaling system is commonly activated in HCC, and is currently being evaluated as a therapeutic target in combination therapies.
View Article and Find Full Text PDFBackground/aims: Hepatocellular carcinoma (HCC) is a chemoresistant tumor strongly associated with chronic hepatitis. Identification of molecular links connecting inflammation with cell growth/survival, and characterization of pro-tumorigenic intracellular pathways is therefore of therapeutic interest. The epidermal growth factor receptor (EGFR) signaling system stands at a crossroad between inflammatory signals and intracellular pathways associated with hepatocarcinogenesis.
View Article and Find Full Text PDFUnlabelled: The identification of molecular mechanisms involved in the maintenance of the transformed phenotype of hepatocellular carcinoma (HCC) cells is essential for the elucidation of therapeutic strategies. Here, we show that human HCC cells display an autocrine loop mediated by connective tissue growth factor (CTGF) that promotes DNA synthesis and cell survival. Expression of CTGF was stimulated by epidermal growth factor receptor (EGFR) ligands and was dependent on the expression of the transcriptional coactivator, Yes-associated protein (YAP).
View Article and Find Full Text PDFHepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance.
View Article and Find Full Text PDF