Congenital zika virus syndrome (CZS) has become a significant worldwide concern since the sudden rise of microcephaly related to zika virus (ZIKV) in Brazil. Primarily transmitted by Aedes mosquitoes, ZIKV shares serologic similarities with dengue virus (DENV), complicating the diagnosis and/or clinical management. The Angiotensin I-Converting Enzyme (ACE) was associated with either neuroprotective or anti-inflammatory properties in the central nervous system (CNS).
View Article and Find Full Text PDFThe Zika virus received significant attention in 2016, following a declaration by the World Health Organization of an epidemic in the Americas, in which infections were associated with microcephaly. Indeed, prenatal Zika virus infection is detrimental to fetal neural stem cells and can cause premature cell loss and neurodevelopmental abnormalities in newborn infants, collectively described as congenital Zika syndrome. Contrastingly, much less is known about how neonatal infection affects the development of the newborn nervous system.
View Article and Find Full Text PDFCongenital Zika syndrome (CZS) is a set of birth defects caused by Zika virus (ZIKV) infection during pregnancy. Microcephaly is its main feature, but other brain abnormalities are found in CZS patients, such as ventriculomegaly, brain calcifications, and dysgenesis of the corpus callosum. Many studies have focused on microcephaly, but it remains unknown how ZIKV infection leads to callosal malformation.
View Article and Find Full Text PDFNdel1 oligopeptidase activity shows promise as a potential biomarker for diagnosing schizophrenia (SCZ) and monitoring early-stage pharmacotherapy. Ndel1 plays a pivotal role in critical aspects of brain development, such as neurite outgrowth, neuronal migration, and embryonic brain formation, making it particularly relevant to neurodevelopmental disorders like SCZ. Currently, the most specific inhibitor for Ndel1 is the polyclonal anti-Ndel1 antibody (NO), known for its high specificity and efficient anti-catalytic activity.
View Article and Find Full Text PDFPurpose: Our main goal is to identify the alterations in the amniotic fluid (AF) metabolome in Zika virus (ZIKV)-infected patients and their relation to congenital Zika syndrome (CZS) progression.
Experimental Design: We applied an untargeted metabolomics strategy to analyze seven AF of pregnant women: healthy women and ZIKV-infected women bearing non-microcephalic and microcephalic fetuses.
Results: Infected patients were characterized by glycerophospholipid metabolism impairment, which is accentuated in microcephalic phenotypes.
Glioblastoma is the most frequent and aggressive primary brain cancer. In preclinical studies, Zika virus, a flavivirus that triggers the death of glioblastoma stem-like cells. However, the flavivirus oncolytic activity has not been demonstrated in human patients.
View Article and Find Full Text PDFGlioblastoma is the most common and malignant type of primary brain tumor. Previous studies have shown that alterations in centrosome amplification and its components are frequently found in treatment-resistant tumors and may be associated with tumor progression. A centrosome protein essential for centrosome biogenesis is the centromere protein J (CENPJ), known to control the proliferation of neural progenitors and hepatocarcinoma cells, and also neuronal migration.
View Article and Find Full Text PDFBrain abnormalities and congenital malformations have been linked to the circulating strain of Zika virus (ZIKV) in Brazil since 2016 during the microcephaly outbreak; however, the molecular mechanisms behind several of these alterations and differential viral molecular targets have not been fully elucidated. Here we explore the proteomic alterations induced by ZIKV by comparing the Brazilian (Br ZIKV) and the African (MR766) viral strains, in addition to comparing them to the molecular responses to the Dengue virus type 2 (DENV). Neural stem cells (NSCs) derived from induced pluripotent stem (iPSCs) were cultured both as monolayers and in suspension (resulting in neurospheres), which were then infected with ZIKV (Br ZIKV or ZIKV MR766) or DENV to assess alterations within neural cells.
View Article and Find Full Text PDFFive years after the identification of Zika virus as a human teratogen, we reviewed the early clinical manifestations, collectively called congenital Zika syndrome (CZS). Children with CZS have a very poor prognosis with extremely low performance in motor, cognitive, and language development domains, and practically all feature severe forms of cerebral palsy. However, these manifestations are the tip of the iceberg, with some children presenting milder forms of deficits.
View Article and Find Full Text PDFNeocortex development comprises of a complex series of time- and space-specific processes to generate the typical interconnected six-layered architecture of adult mammals. Axon growth is required for the proper establishment of cortical circuits. Malformations in axonal growth and pathfinding might lead to severe neuropathologies, such as corpus callosum dysgenesis.
View Article and Find Full Text PDFPurpose: Zika virus (ZIKV) transmission to the fetus during pregnancy could enable a collection of severe fetal malformations like microcephaly (MC), termed Congenital Zika Syndrome (CZS). The mechanisms involved in ZIKV transplacental transmission are not fully understood.
Experimental Design: Here we aim to identify in placental tissues the deregulated proteins associated with ZIKV-induced MC using label-free proteomics.
During pregnancy, the vertical transmission of the Zika virus (ZIKV) can cause some disorders in the fetus, called Congenital Zika Syndrome (CZS). Several efforts have been made to understand the molecular mechanism of the CZS. However, the study of CZS pathogenesis through infected human samples is scarce.
View Article and Find Full Text PDFThe corpus callosum (CC) is a major interhemispheric commissure of placental mammals. Early steps of CC formation rely on guidance strategies, such as axonal branching and collateralization. Here we analyze the time-course dynamics of axonal bifurcation during typical cortical development or in a CC dysgenesis mouse model.
View Article and Find Full Text PDFDeafferentation is an important determinant of plastic changes in the CNS, which consists of a loss of inputs from the body periphery or from the CNS itself. Although cortical reorganization has been well documented, white matter plasticity was less explored. Our goal was to investigate microstructural interhemispheric connectivity changes in early and late amputated rats.
View Article and Find Full Text PDFThe northeast (NE) region of Brazil commonly goes through drought periods, which favor cyanobacterial blooms, capable of producing neurotoxins with implications for human and animal health. The most severe dry spell in the history of Brazil occurred between 2012 and 2016. Coincidently, the highest incidence of microcephaly associated with the Zika virus (ZIKV) outbreak took place in the NE region of Brazil during the same years.
View Article and Find Full Text PDFZika virus (ZIKV) infection during pregnancy is associated with a spectrum of developmental impairments known as congenital Zika syndrome (CZS). The prevalence of this syndrome varies across ZIKV endemic regions, suggesting that its occurrence could depend on cofactors. Here, we evaluate the relevance of protein malnutrition for the emergence of CZS.
View Article and Find Full Text PDFThe Zika virus (ZIKV) is a mosquito-borne Flavivirus and can be transmitted through an infected mosquito bite or through human-to-human interaction by sexual activity, blood transfusion, breastfeeding, or perinatal exposure. After the 2015-2016 outbreak in Brazil, a strong link between ZIKV infection and microcephaly emerged. ZIKV specifically targets human neural progenitor cells, suggesting that proteins encoded by ZIKV bind and inactivate host cell proteins, leading to microcephaly.
View Article and Find Full Text PDFThe cerebral cortex constitutes more than half the volume of the human brain and is presumed to be responsible for the neuronal computations underlying complex phenomena, such as perception, thought, language, attention, episodic memory and voluntary movement. Rodent models are extremely valuable for the investigation of brain development, but cannot provide insight into aspects that are unique or highly derived in humans. Many human psychiatric and neurological conditions have developmental origins but cannot be studied adequately in animal models.
View Article and Find Full Text PDF