Publications by authors named "Garbisu C"

Soil contamination by antibiotics is a global issue of great concern that contributes to the rise of bacterial antibiotic resistance and can have toxic effects on non-target organisms. This study evaluated the variations of molecular, cellular, and histological parameters in Eisenia fetida earthworms exposed to sulfamethazine (SMZ) and tetracycline (TC), two antibiotics commonly found in agricultural soils. The earthworms were exposed for 14 days to a series of concentrations (0, 10, 100, and 1000 mg/kg) of both antibiotics.

View Article and Find Full Text PDF

The scientific community warns that our impact on planet Earth is so acute that we are crossing several of the planetary boundaries that demarcate the safe operating space for humankind. Besides, there is mounting evidence of serious effects on people's health derived from the ongoing environmental degradation. Regarding human health, the spread of antibiotic resistant bacteria is one of the most critical public health issues worldwide.

View Article and Find Full Text PDF

The remediation of mixed contaminated soil is challenging as it often requires actions to minimize metal-induced risks while degrading organic contaminants. Here, the effectiveness of different bioremediation strategies, namely, rhizoremediation with native plant species, mycoremediation with Pleurotus ostreatus spent mushroom substrate, and biostimulation with organic by-products (i.e.

View Article and Find Full Text PDF

It is necessary to complement next-generation sequencing data on the soil resistome with theoretical knowledge provided by ecological studies regarding the spread of antibiotic resistant bacteria (ARB) in the abiotic and, especially, biotic fraction of the soil ecosystem. Particularly, when ARB enter agricultural soils as a consequence of the application of animal manure as fertilizer, from a microbial ecology perspective, it is important to know their fate along the soil food web, that is, throughout that complex network of feeding interactions among members of the soil biota that has crucial effects on species richness and ecosystem productivity and stability. It is critical to study how the ARB that enter the soil through the application of manure can reach other taxonomical groups (e.

View Article and Find Full Text PDF

Antibiotic resistance represents one of the greatest threats to global health. The spread of antibiotic resistance genes among bacteria occurs mostly through horizontal gene transfer via conjugation mediated by plasmids. This process implies a direct contact between a donor and a recipient bacterium which acquires the antibiotic resistance genes encoded by the plasmid and, concomitantly, the capacity to transfer the acquired plasmid to a new recipient.

View Article and Find Full Text PDF

The use of animal manure as organic fertilizer is a common agricultural practice that can improve soil health and crop yield. However, antibiotics and their metabolites are often present in animal manure and, hence, in manure-amended soil. The aim of this study was to assess the induced development of oxytetracycline (OTC) tolerance in soil bacterial communities as a result of the addition of OTC to soil amended with well-aged cow manure.

View Article and Find Full Text PDF

Mycoremediation with mushroom growth substrates can be used for the recovery of mixed contaminated soils due to the benefits derived from the physicochemical characteristics of the substrates, the activity of extracellular enzymes secreted by the fungi, and the presence of the fungal mycelia. The objective of this work was to assess the potential of Agaricus bisporus and Pleurotus ostreatus growth substrates (inoculated mushroom substrates vs. spent mushroom substrates) for the mycoremediation of soils co-contaminated with lead and lindane (γ-HCH).

View Article and Find Full Text PDF

Agricultural fertilization with organic amendments of animal origin often leads to antibiotic resistance dissemination. In this study, we evaluated the effect of different treatments (anaerobic digestion, biochar application, ozonation, zerovalent iron nanoparticle application, and spent mushroom substrate addition) on the resistome in dairy cow manure-derived amendments (slurry, manure, and compost). Anaerobic digestion and biochar application resulted in the highest reduction in antibiotic resistance gene (ARG) and mobile genetic element (MGE) gene abundance.

View Article and Find Full Text PDF

There is a growing concern about the risk of antibiotic resistance emergence and dissemination in the environment. Here, we evaluated the spatio-seasonal patterns of the impact of wastewater treatment plant (WWTP) effluents on antibiotic resistance in river sediments. To this purpose, sediment samples were collected in three river basins affected by WWTP effluents in wet (high-water period) and dry (low-water period) hydrological conditions at three locations: (i) upstream the WWTPs; (ii) WWTP effluent discharge points (effluent outfall); and (iii) downstream the WWTPs (500 m downriver from the effluent outfall).

View Article and Find Full Text PDF

In cow farms, the interaction between animal and environmental microbiomes creates hotspots for antibiotic resistance dissemination. A shotgun metagenomic approach was used to survey the resistome risk in five dairy cow farms. To this purpose, 10 environmental compartments were sampled: 3 of them linked to productive cows (fresh slurry, stored slurry, slurry-amended pasture soil); 6 of them to non-productive heifers and dry cows (faeces, fresh manure, aged manure, aged manure-amended orchard soil, vegetables-lettuces and grazed soil); and, finally, unamended control soil.

View Article and Find Full Text PDF

Soils of abandoned and vacant lands in the periphery of cities are frequently subjected to illegal dumping and can undergo degradation processes such as depletion of organic matter and nutrients, reduced biodiversity, and the presence of contaminants, which may exert an intense abiotic stress on biological communities. Mycorrhizal-assisted phytoremediation and intercropping strategies are highly suitable options for remediation of these sites. A two-year field experiment was conducted at a peri-urban site contaminated with petroleum hydrocarbons and polychlorinated biphenyls, to assess the effects of plant growth (spontaneous plant species, , and × , alone intercropped) and inoculation of a commercial arbuscular mycorrhizal and ectomycorrhizal inoculum.

View Article and Find Full Text PDF

The management of municipal solid waste is a major logistic and environmental problem worldwide. Nonetheless, the organic fraction of municipal solid waste (OFMSW) is a valuable source of nutrients which can be used for a variety of purposes, according to the Circular Economy paradigm. Among the possible applications, the bioproduction of a biodegradable polyester, poly(3-hydroxybutyrate) [P(3HB)], using OFMSW as carbon platform is a promising strategy.

View Article and Find Full Text PDF

The application of sewage sludge (SS) to agricultural soil can help meet crop nutrient requirements and enhance soil properties, while reusing an organic by-product. However, SS can be a source of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), resulting in an increased risk of antibiotic resistance dissemination. We studied the effect of the application of thermally-dried anaerobically-digested SS on (i) soil physicochemical and microbial properties, and (ii) the relative abundance of 85 ARGs and 10 MGE-genes in soil.

View Article and Find Full Text PDF

The application of organic amendments to agricultural soil can enhance crop yield, while improving the physicochemical and biological properties of the recipient soils. However, the use of manure-derived amendments as fertilizers entails environmental risks, such as the contamination of soil and crops with antibiotic residues, antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). In order to delve into these risks, we applied dairy cow manure-derived amendments (slurry, fresh manure, aged manure), obtained from a conventional and an organic farm, to soil.

View Article and Find Full Text PDF

Increasing soil loss and the scarcity of useful land requires new reusing strategies. Thus, recovery of polluted soils recovery offers a chance for economic and social regeneration. With this objective, different soil cleaning technologies have been developed during the last few decades.

View Article and Find Full Text PDF

Soils contaminated by organic and inorganic pollutants like Cr(VI) and lindane, is currently a main environmental challenge. Biological strategies, such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, and nanoremediation with nanoscale zero-valent iron (nZVI) are promising approaches for polluted soil health recovery. The combination of different remediation strategies might be key to address this problem.

View Article and Find Full Text PDF

The phytomanagement concept combines a sustainable reduction of pollutant linkages at risk-assessed contaminated sites with the generation of both valuable biomass for the (bio)economy and ecosystem services. One of the potential benefits of phytomanagement is the possibility to increase biodiversity in polluted sites. However, the unique biodiversity present in some polluted sites can be severely impacted by the implementation of phytomanagement practices, even resulting in the local extinction of endemic ecotypes or species of great conservation value.

View Article and Find Full Text PDF

The increase of infections caused by multidrug-resistant bacteria, together with the loss of effectiveness of currently available antibiotics, represents one of the most serious threats to public health worldwide. The loss of human lives and the economic costs associated to the problem of the dissemination of antibiotic resistance require immediate action. Bacteria, known by their great genetic plasticity, are capable not only of mutating their genes to adapt to disturbances and environmental changes but also of acquiring new genes that allow them to survive in hostile environments, such as in the presence of antibiotics.

View Article and Find Full Text PDF

Gentle Remediation Options (GROs), such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, are cost-effective and environmentally-friendly solutions for soils simultaneously polluted with organic and inorganic compounds. This study assessed the individual and combined effectiveness of GROs in recovering the health of a soil artificially polluted with hexavalent chromium [Cr(VI)] and lindane. A greenhouse experiment was performed using organically-amended non-amended mixed polluted soils.

View Article and Find Full Text PDF

Type IV Coupling Proteins (T4CPs) are essential elements in many type IV secretion systems (T4SSs). The members of this family display sequence, length, and domain architecture heterogeneity, being the conserved Nucleotide-Binding Domain the motif that defines them. In addition, most T4CPs contain a Transmembrane Domain (TMD) in the amino end and an All-Alpha Domain facing the cytoplasm.

View Article and Find Full Text PDF

Chromium is considered an environmental pollutant of much concern whose toxicity depends, to a great extent, on its valence state, with Cr(VI) being more soluble, bioavailable, and toxic, compared to Cr(III). Nanoremediation is a promising strategy for the remediation of metal pollutants by changing their valence state. However, among other aspects, its effectiveness for soil remediation is seriously hampered by the interaction of nanoparticles with soil organic matter.

View Article and Find Full Text PDF

The anaerobic decomposition of organic wastes might lead to the formation of organic-byproducts which can then be successfully used as organic fertilizers. This study evaluated the impact of the application of two fermented liquid organic amendments (commercial vs. farm-made) at two doses of application (optimal vs.

View Article and Find Full Text PDF

At a former wood preservation site contaminated with Cu, various phytomanagement options have been assessed in the last decade through physicochemical, ecotoxicological and biological assays. In a field trial at this site, phytomanagement with a crop rotation based on tobacco and sunflower, combined with the incorporation of compost and dolomitic limestone, has proved to be efficient in Cu-associated risk mitigation, ecological soil functions recovery and net gain of economic and social benefits. To demonstrate the long-term effectiveness and sustainability of phytomanagement, we assessed here the influence of this remediation option on the diversity, composition and structure of microbial communities over time, through a metabarcoding approach.

View Article and Find Full Text PDF

Technosols can be used to rehabilitate degraded land and reuse wastes. Ideally, these newly formed soils should also fulfil the main soil functions. In this study, initially, we characterized the physicochemical and microbial properties of different formulations and their ingredients (i.

View Article and Find Full Text PDF

The application of nanoscale zero-valent iron particles (nZVI) for the remediation of contaminated sites is very promising. However, information concerning the ecotoxicity of nZVI on soil microbial communities and, hence, soil quality, is still scarce. We carried out a three-month experiment to evaluate the impact of the application of different concentrations of nZVI (from 1 to 20 mg g DW soil) on soil microbial properties in a clay-loam versus a sandy-loam soil.

View Article and Find Full Text PDF