The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused more than 6 million deaths all over the world, demonstrating the need for a simple, fast and cost-effective point-of-care (POC) test for the detection of the virus. In this work, we developed an electrochemical sensor for SARS-CoV-2 virus detection on clinical samples based on loop-mediated isothermal amplification (LAMP). With the development of this novel sensor, the time of each measurement is significantly reduced by avoiding the DNA extraction step and replacing it with inactivation of the sample by heating it at 95 °C for 10 min.
View Article and Find Full Text PDFIntroduction: The heat shock protein 90 (Hsp90) is a protein involved in many different biological processes and especially in cell survival. Some of these functions require the participation of other biological molecules, so Hsp90 is a chaperone that takes part in many protein-protein interactions working as a critical signaling hub protein. As a member of the heat shock protein family, Hsp90 expression is regulated under certain environmental and/or stressful situations, therefore Hsp90 concentration can be monitored and linked to these effects.
View Article and Find Full Text PDFThe pandemic situation caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need of fast, simple, and cost-effective tests for the diagnosis of emerging pathogens. RT-qPCR has been established as the reference technique for the diagnosis of SARS-CoV-2 infections. This method requires a time-consuming protocol for the extraction of the nucleic acids present in the sample.
View Article and Find Full Text PDFThe aim of this work is the design and 3D printing of a new electrochemical sensor for the detection of based on loop mediated isothermal amplification (LAMP). The food related diseases involve a serious health issue all over the world. is one of the major problems of contaminated food, this pathogen causes a disease called listeriosis with a high rate of hospitalization and mortality.
View Article and Find Full Text PDFA rapid highly sensitive genosensor has been developed for monitoring the presence of Legionella spp. in different water systems (domestic hot water, heating/cooling systems or cooling towers) in order to avoid its spreading from the source of contamination. The genosensor integrates a loop mediated isothermal amplification (LAMP) reaction with an electrochemical transduction signal, producing a very simple, rapid to perform and cost effective method, suitable for in situ analyses.
View Article and Find Full Text PDFOur POC (Point of Care) device is intended to be a diagnostic tool for routine use in the clinical sector. The validation of the whole procedure, including bacterial genomic DNA isolation and the Real Time detection of Salmonella spp., was conducted on 29 clinical stool samples that had been diagnosed with Salmonella spp.
View Article and Find Full Text PDFThis paper describes how sixteen partners from eight different countries across Europe are working together in two EU projects focused on the development of a point of care system. This system uses disposable Lab on a Chips (LOCs) that carry out the complete assay from sample preparation to result interpretation of raw samples. The LOC is either embedded in a flexible motherboard with the form of a smartcard (Labcard) or in a Skinpatch.
View Article and Find Full Text PDF