Publications by authors named "Garbet X"

We investigate the motion of charged particles in a turbulent electrostatic potential using guiding-center theory. By increasing the Larmor radius, the dynamics exhibit close-to-ballistic transport properties. The transition from diffusive to ballistic transport is analyzed using nonlinear dynamics.

View Article and Find Full Text PDF

In H-mode tokamak plasmas, the plasma is sometimes ejected beyond the edge transport barrier. These events are known as edge localized modes (ELMs). ELMs cause a loss of energy and damage the vessel walls.

View Article and Find Full Text PDF

Full self-consistent stationary Vlasov-Maxwell solutions of magnetically confined plasmas are built for systems with cylindrical symmetries. The stationary solutions are thermodynamic equilibrium solutions. These are obtained by computing the equilibrium distribution function resulting from maximizing the entropy and closing the equations with source terms that are then computed by using the obtained distribution.

View Article and Find Full Text PDF

In absence of external torque, plasma rotation in tokamaks results from a balance between collisional magnetic braking and turbulent drive. The outcome of this competition and cooperation is essential to determine the plasma flow. A reduced model, supported by gyrokinetic simulations, is first used to explain and quantify the competition only.

View Article and Find Full Text PDF

Turbulence in hot magnetized plasmas is shown to generate permeable localized transport barriers that globally organize into the so-called "ExB staircase" [G. Dif-Pradalier et al., Phys.

View Article and Find Full Text PDF

The full dynamics of a multi-edge-localized-mode (ELM) cycle is modeled for the first time in realistic tokamak X-point geometry with the nonlinear reduced MHD code jorek. The diamagnetic rotation is found to be instrumental to stabilize the plasma after an ELM crash and to model the cyclic reconstruction and collapse of the plasma pressure profile. ELM relaxations are cyclically initiated each time the pedestal gradient crosses a triggering threshold.

View Article and Find Full Text PDF

We study the motion of a charged particle in a tokamak magnetic field and discuss its chaotic nature. Contrary to most of recent studies, we do not make any assumption on any constant of the motion and solve numerically the cyclotron gyration using Hamiltonian formalism. We take advantage of a symplectic integrator allowing us to make long-time simulations.

View Article and Find Full Text PDF

A possible mechanism of edge localized modes (ELMs) mitigation by resonant magnetic perturbations (RMPs) is proposed based on the results of nonlinear resistive magnetohydrodynamic modeling using the jorek code, realistic JET-like plasma parameters and an RMP spectrum of JET error-field correction coils (EFCC) with a main toroidal number n=2 were used in the simulations. Without RMPs, a large ELM relaxation is obtained mainly due to the most unstable medium-n ballooning mode. The externally imposed RMP drives nonlinearly the modes coupled to n=2 RMP which produce small multimode relaxations, mitigated ELMs.

View Article and Find Full Text PDF

Transport in fusion plasmas is investigated with modified sandpile models. Based on results from more complete simulations, the sandpile model is modified in steps. Models with a constant source are obtained by coupling two sandpiles.

View Article and Find Full Text PDF

The generation and dynamics of transport barriers governed by sheared poloidal flows are analyzed in flux-driven 5D gyrokinetic simulations of ion temperature gradient driven turbulence in tokamak plasmas. The transport barrier is triggered by a vorticity source that polarizes the system. The chosen source captures characteristic features of some experimental scenarios, namely, the generation of a sheared electric field coupled to anisotropic heating.

View Article and Find Full Text PDF

The impact on turbulent transport of geodesic acoustic modes excited by energetic particles is evidenced for the first time in flux-driven 5D gyrokinetic simulations using the Gysela code. Energetic geodesic acoustic modes (EGAMs) are excited in a regime with a transport barrier in the outer radial region. The interaction between EGAMs and turbulence is such that turbulent transport can be enhanced in the presence of EGAMs, with the subsequent destruction of the transport barrier.

View Article and Find Full Text PDF

Self-consistent turbulent transport of high-concentration impurities in magnetically confined fusion plasmas is studied using a three-dimensional nonlinear fluid global turbulence model which includes ion-temperature gradient and trapped electron mode instabilities. It is shown that the impurity concentration can have a dramatic feedback in the turbulence and, as a result, it can significantly change the transport properties of the plasma. High concentration impurities can trigger strong intermittency that manifests in non-Gaussian heavy tails of the probability density functions of the E × B fluctuations and of the ion-temperature flux fluctuations.

View Article and Find Full Text PDF

We investigate the multiscale nonlinear dynamics of a linearly stable or unstable tearing mode with small-scale interchange turbulence using 2D MHD numerical simulations. For a stable tearing mode, the nonlinear beating of the fastest growing small-scale interchange modes drives a magnetic island with an enhanced growth rate to a saturated size that is proportional to the turbulence generated anomalous diffusion. For a linearly unstable tearing mode the island saturation size scales inversely as one-fourth power of the linear tearing growth rate in accordance with weak turbulence theory predictions.

View Article and Find Full Text PDF

The nonlinear evolution of resonantly driven systems, such as suprathermal particle driven modes in magnetically confined plasmas, is shown to strongly depend on the existence and nature of an underlying damping mechanism. When background resonant damping is present, subcritical states can take place. In particular, purely nonlinear steady-state regimes are found, whose destabilization threshold and saturation levels are calculated and validated using numerical simulations.

View Article and Find Full Text PDF

The turbulent impurity (nickel) transport dependence on the normalized electron temperature gradient has been analyzed in sawtooth-free electron cyclotron wave heated Tore Supra plasmas. In the core, our experimental analysis shows that the lower R/L((T)(e)), the lower the nickel diffusion coefficient. The latter decreases until the instability threshold is reached.

View Article and Find Full Text PDF

A systematic, constructive and self-consistent procedure to quantify nonlocal, nondiffusive action at a distance in plasma turbulence is exposed and applied to turbulent heat fluxes computed from the state-of-the-art full- f, flux-driven gyrokinetic GYSELA and XGC1 codes. A striking commonality is found: heat transport below a dynamically selected mesoscale has the structure of a Lévy distribution, is strongly nonlocal, nondiffusive, scale-free, and avalanche mediated; at larger scales, we report the observation of a self-organized flow structure which we call the " E × B staircase" after its planetary analog.

View Article and Find Full Text PDF

Impurity transport in tokamak core plasmas is investigated with a three-dimensional fluid global code. It is shown that, in the presence of an internal transport barrier (ITB) created by a reversed magnetic shear configuration, one can obtain a reversal of the impurity pinch velocity which can change from the inward direction to the outward direction. This scenario is favorable for expelling impurities from the central region and decontaminating the core plasma.

View Article and Find Full Text PDF

Bursty transport phenomena associated with convective motion present universal statistical characteristics among different physical systems. In this Letter, a stochastic univariate model and the associated probability distribution function for the description of bursty transport in plasma turbulence is presented. The proposed stochastic process recovers the universal distribution of density fluctuations observed in plasma edge of several magnetic confinement devices and the remarkable scaling between their skewness S and kurtosis K.

View Article and Find Full Text PDF

The nonlinear dynamics of magnetic tearing islands imbedded in a pressure gradient driven turbulence is investigated numerically in a reduced magnetohydrodynamic model. The study reveals regimes where the linear and nonlinear phases of the tearing instability are controlled by the properties of the pressure gradient. In these regimes, the interplay between the pressure and the magnetic flux determines the dynamics of the saturated state.

View Article and Find Full Text PDF

The impact of ion-ion collisions on confinement is investigated with the full-f and global gyrokinetic Gysela code through a series of nonlinear turbulence simulations for tokamak parameters. A twofold scan in the turbulence drive and in collisionality is performed, highlighting (i) a heat transport expressed in terms of critical quantities-threshold and exponent, (ii) a first evidence of turbulent generation of poloidal momentum, and (iii) the dominance of mean flow shear, mediated through the turbulent corrugation of the mean profiles, with regard to the oft-invoked zonal flow shear.

View Article and Find Full Text PDF

A simple model for the evolution of turbulence fluctuation spectra, which includes neighboring interactions leading to the usual dual cascade as well as disparate scale interactions corresponding to refraction by large scale structures, is derived. The model recovers the usual Kraichnan-Kolmogorov picture in the case of exclusively local interactions and midrange drive. On the other hand, when disparate scale interactions are dominant, a simple spectrum for the density fluctuations of the form |nk|2 proportional to k(-3)/(1+k2)2 is obtained.

View Article and Find Full Text PDF

The theoretical study of plasma turbulence is of central importance to fusion research. Experimental evidence indicates that the confinement time results mainly from the turbulent transport of energy, the magnitude of which depends on the turbulent state resulting from nonlinear saturation mechanisms, in particular, the self-generation of coherent macroscopic structures and large scale flows. Plasma geometry has a strong impact on the structure and magnitude of these flows and also modifies the mode linear growth rates.

View Article and Find Full Text PDF

Turbulence measurements in TORE SUPRA tokamak plasmas have been quantitatively compared to predictions by nonlinear gyrokinetic simulations. For the first time, numerical results simultaneously match within experimental uncertainty (a) the magnitude of effective heat diffusivity, (b) rms values of density fluctuations, and (c) wave-number spectra in both the directions perpendicular to the magnetic field. Moreover, the nonlinear simulations help to revise as an instrumental effect the apparent experimental evidence of strong turbulence anisotropy at spatial scales of the order of ion-sound Larmor radius.

View Article and Find Full Text PDF

MHD instabilities driven by fast electrons identified as fishbonelike modes have been detected on Tore Supra during lower hybrid current drive discharges. Direct experimental evidence is reported of a novel feature: the regular redistribution of suprathermal electrons toward external tokamak regions which are correlated to periodic mode frequency jumps. Sharp drops of the electron temperature time trace are factually linked to the cyclical deterioration of the fast electron confinement.

View Article and Find Full Text PDF

Transport-barrier relaxation oscillations in the presence of resonant magnetic perturbations are investigated using three-dimensional global fluid turbulence simulations from first principles at the edge of a tokamak. It is shown that resonant magnetic perturbations have a stabilizing effect on these relaxation oscillations and that this effect is due mainly to a modification of the pressure profile linked to the presence of both residual magnetic island chains and a stochastic layer.

View Article and Find Full Text PDF