Publications by authors named "Garate L"

Article Synopsis
  • The text discusses the creation of gmctool, an online tool designed to predict metabolic weaknesses in cancer cells, which is important for systems biology research.
  • This tool utilizes a concept called genetic Minimal Cut Sets (gMCSs) to analyze genome-scale metabolic networks and includes a database of synthetic lethals derived from the latest metabolic map of human cells.
  • Notably, gmctool has shown improved performance over earlier algorithms and has been applied to multiple myeloma, a type of blood cancer, providing experimental evidence for the critical roles of specific enzymes in certain patient groups.
View Article and Find Full Text PDF

Despite the development of novel therapies for acute myeloid leukemia, outcomes remain poor for most patients, and therapeutic improvements are an urgent unmet need. Although treatment regimens promoting differentiation have succeeded in the treatment of acute promyelocytic leukemia, their role in other acute myeloid leukemia subtypes needs to be explored. Here we identify and characterize two lysine deacetylase inhibitors, CM-444 and CM-1758, exhibiting the capacity to promote myeloid differentiation in all acute myeloid leukemia subtypes at low non-cytotoxic doses, unlike other commercial histone deacetylase inhibitors.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found new types of cells in lab-grown human stem cells that are similar to early human embryo cells.
  • The main type of cell they studied looks like what is called an epiblast, but they also found cells that are similar to the 8-cell stage of an embryo and others that resemble trophectoderm cells, which are important for the embryo's development.
  • This research helps us learn more about the first steps of how human embryos develop, from the early cell stages to when they start to attach to the mother.
View Article and Find Full Text PDF

Pico- and nanoplankton are key players in the marine ecosystems due to their implication in the biogeochemical cycles, nutrient recycling and the pelagic food webs. However, the specific dynamics and niches of most bacterial, archaeal and eukaryotic plankton remain unknown, as well as the interactions between them. Better characterization of these is critical for understanding and predicting ecosystem functioning under anthropogenic pressures.

View Article and Find Full Text PDF

Recent functional genomic screens—such as CRISPR-Cas9 or RNAi screening—have fostered a new wave of targeted treatments based on the concept of synthetic lethality. These approaches identified LEthal Dependencies (LEDs) by estimating the effect of genetic events on cell viability. The multiple-hypothesis problem is related to a large number of gene knockouts limiting the statistical power of these studies.

View Article and Find Full Text PDF

Concomitant inhibition of key epigenetic pathways involved in silencing tumor suppressor genes has been recognized as a promising strategy for cancer therapy. Herein, we report a first-in-class series of quinoline-based analogues that simultaneously inhibit histone deacetylases (from a low nanomolar range) and DNA methyltransferase-1 (from a mid-nanomolar range, IC < 200 nM). Additionally, lysine methyltransferase G9a inhibitory activity is achieved (from a low nanomolar range) by introduction of a key lysine mimic group at the 7-position of the quinoline ring.

View Article and Find Full Text PDF

Multiple myeloma (MM) is an incurable disease, whose clinical heterogeneity makes its management challenging, highlighting the need for biological features to guide improved therapies. Deregulation of specific long non-coding RNAs (lncRNAs) has been shown in MM, nevertheless, the complete lncRNA transcriptome has not yet been elucidated. In this work, we identified 40,511 novel lncRNAs in MM samples.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a plasma cell neoplasm associated with a broad variety of genetic lesions. In spite of this genetic heterogeneity, MMs share a characteristic malignant phenotype whose underlying molecular basis remains poorly characterized. In the present study, we examined plasma cells from MM using a multi-epigenomics approach and demonstrated that, when compared to normal B cells, malignant plasma cells showed an extensive activation of regulatory elements, in part affecting coregulated adjacent genes.

View Article and Find Full Text PDF
Article Synopsis
  • Bladder cancer is particularly deadly in its advanced stages, and recent research has identified new genetic targets and emphasized the limited effectiveness of current treatments, especially immune checkpoint inhibitors.
  • The study highlights how high levels of G9a (EHMT2) expression correlate with worse outcomes and shows that a novel inhibitor, CM-272, can induce cancer cell death and boost immune response when combined with traditional chemotherapy.
  • The combination of CM-272 with immune checkpoint inhibitors demonstrates significant tumor regression and improved immune reactions in a mouse model, suggesting new strategies for treating bladder cancer by pairing epigenetic therapies with immunotherapy.
View Article and Find Full Text PDF

lncRNAs make up a majority of the human transcriptome and have key regulatory functions. Here we perform unbiased de novo annotation of transcripts expressed during the human humoral immune response to find 30% of the human genome transcribed during this process, yet 58% of these transcripts manifest striking differential expression, indicating an lncRNA phylogenetic relationship among cell types that is more robust than that of coding genes. We provide an atlas of lncRNAs in naive and GC B-cells that indicates their partition into ten functionally categories based on chromatin features, DNase hypersensitivity and transcription factor localization, defining lncRNAs classes such as enhancer-RNAs (eRNA), bivalent-lncRNAs, and CTCF-associated, among others.

View Article and Find Full Text PDF

We studied the core bacterial communities of 19 sponge species from Nha Trang Bay (Central Vietnam), with particular emphasis on the contribution of planktonic seawater bacteria to the sponge core microbiomes. To ensure consistent sponge-microbe associations and accurate identification of planktonic bacteria transmitted from seawater, we were very restrictive with the definition of the sponge core microbiomes (present in all the replicates), and with the identification of valid biological 16S rRNA gene sequences (100% sequence identity) that belonged to potentially different bacterial taxa. We found a high overlap (>50% relative abundance) between the sponge species core microbiome and the seawater bacterial core in ca.

View Article and Find Full Text PDF

Using knowledge- and structure-based approaches, we designed and synthesized reversible chemical probes that simultaneously inhibit the activity of two epigenetic targets, histone 3 lysine 9 methyltransferase (G9a) and DNA methyltransferases (DNMT), at nanomolar ranges. Enzymatic competition assays confirmed our design strategy: substrate competitive inhibitors. Next, an initial exploration around our hit 11 was pursued to identify an adequate tool compound for in vivo testing.

View Article and Find Full Text PDF

Epigenetic regulators that exhibit aberrant enzymatic activities or expression profiles are potential therapeutic targets for cancers. Specifically, enzymes responsible for methylation at histone-3 lysine-9 (like G9a) and aberrant DNA hypermethylation (DNMTs) have been implicated in a number of cancers. Recently, molecules bearing a 4-aminoquinoline scaffold were reported as dual inhibitors of these targets and showed a significant in vivo efficacy in animal models of hematological malignancies.

View Article and Find Full Text PDF

The combination of defined factors with small molecules targeting epigenetic factors is a strategy that has been shown to enhance optimal derivation of iPSCs and could be used for disease modelling, high throughput screenings and/or regenerative medicine applications. In this study, we showed that a new first-in-class reversible dual G9a/DNMT1 inhibitor compound (CM272) improves the efficiency of human cell reprogramming and iPSC generation from primary cells of healthy donors and patient samples, using both integrative and non-integrative methods. Moreover, CM272 facilitates the generation of human iPSC with only two factors allowing the removal of the most potent oncogenic factor cMYC.

View Article and Find Full Text PDF

Constraint-based modeling for genome-scale metabolic networks has emerged in the last years as a promising approach to elucidate drug targets in cancer. Beyond the canonical biosynthetic routes to produce biomass, it is of key importance to focus on metabolic routes that sustain the proliferative capacity through the regulation of other biological means in order to improve in-silico gene essentiality analyses. Polyamines are polycations with central roles in cancer cell proliferation, through the regulation of transcription and translation among other things, but are typically neglected in in silico cancer metabolic models.

View Article and Find Full Text PDF
Article Synopsis
  • Synthetic lethality is a new idea in cancer research that could help create better treatments.
  • The authors developed a way to predict which genes can be targeted to stop cancer cells from growing, focusing on a specific enzyme called RRM1 in a type of blood cancer.
  • Their study shows that blocking RRM1 can hurt cancer cells and creates a new method that can help scientists find more ways to treat cancer in the future.
View Article and Find Full Text PDF

Sponges are key organisms in the marine benthos where they play essential roles in ecological processes such as creating new niches, competition for resources, and organic matter recycling. Despite the increasing number of taxonomical studies, many sponge species remain hidden, whether unnoticed or cryptic. The occurrence of cryptic species may confound ecological studies by underestimating biodiversity.

View Article and Find Full Text PDF

Background: In a recent paper, we described a new sponge species named Uriz, Garate & Agell, 2017. However, we failed to designate a holotype and a type locality, as required by the International Commission on Zoological Nomenclature (ICZN). Although the validity of the previous conclusions remains unchanged, the species name cannot be considered available according to ICZN regulations until a holotype is designated.

View Article and Find Full Text PDF

Background: Sponges are particularly prone to hiding cryptic species as their paradigmatic plasticity often favors species phenotypic convergence as a result of adaptation to similar habitat conditions. is a sponge genus (Family Hymedesmiidae, Order Poecilosclerida) with four formally described species, from which only has been recorded in the Atlanto-Mediterranean basin, on shallow to 80 m deep bottoms. Contrasting biological features between shallow and deep individuals of suggested larger genetic differences than those expected between sponge populations.

View Article and Find Full Text PDF

From an evolutionary point of view, sponges are ideal targets to study marine symbioses as they are the most ancient living metazoans and harbour highly diverse microbial communities. A recently discovered association between the sponge Hemimycale columella and an intracellular bacterium that generates large amounts of calcite spherules has prompted speculation on the possible role of intracellular bacteria in the evolution of the skeleton in early animals. To gain insight into this purportedly ancestral symbiosis, we investigated the presence of symbiotic bacteria in Mediterranean and Caribbean sponges.

View Article and Find Full Text PDF

Background: Research is an essential activity for improving quality and efficiency in healthcare. The objective of this study was to train nurses from the public Basque Health Service (Osakidetza) in critical appraisal, promoting continuous training and the use of research in clinical practice.

Methods: This was a prospective pre-post test study.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic myelomonocytic leukemia (CMML) is linked to high mutation rates in genes like TET2 and EZH2, which are involved in epigenetic regulation.
  • A study analyzing 24 CMML patients found 249 genes with altered DNA methylation and highlighted disrupted signaling pathways, particularly those related to PLC, JNK, and ERK.
  • Mutations were present in TET2 (65% of patients) and JAK2 (17%), indicating that TET2 mutations correspond to a unique CMML subtype with distinct epigenetic characteristics and a greater risk of aggressive disease.
View Article and Find Full Text PDF

Fanconi anemia (FA) is an inherited genetic disorder associated with BM failure and cancer predisposition. In the present study, we sought to elucidate the role of microRNAs (miRNAs) in the hematopoietic defects observed in FA patients. Initial studies showed that 3 miRNAs, hsa-miR-133a, hsa-miR-135b, and hsa-miR-181c, were significantly down-regulated in lymphoblastoid cell lines and fresh peripheral blood cells from FA patients.

View Article and Find Full Text PDF