Nucleic Acids Res
January 2025
Hundreds of millions of single cells have been analyzed using high-throughput transcriptomic methods. The cumulative knowledge within these datasets provides an exciting opportunity for unlocking insights into health and disease at the level of single cells. Meta-analyses that span diverse datasets building on recent advances in large language models and other machine-learning approaches pose exciting new directions to model and extract insight from single-cell data.
View Article and Find Full Text PDFWe have evaluated several approaches to increase protein synthesis in a cell-free coupled bacterial transcription and translation system. A strong p promoter, originally isolated from a moderate thermophilic bacterium , was used to improve the performance of a cell-free system in extracts of BL21 (DE3). A stimulating effect on protein synthesis was detected with extracts prepared from recombinant cells, in which the RNA polymerase subunits α, β, β' and ω are simultaneously coexpressed.
View Article and Find Full Text PDFIncreasing evidence links Notch-1 signaling with the maintenance of intestinal architecture and homeostasis. Dysfunction in the common Notch-1 pathway transcription factor recombinant binding protein suppressor of hairless (RBP-J) is associated with loss of epithelial barrier integrity and aberrant conversion of proliferative crypt cells into goblet cells. Furthermore, we have recently discovered that epithelial Notch-1 is indispensable in bridging innate and adaptive immunity in the gut and is required for supporting protective epithelial pro-inflammatory responses.
View Article and Find Full Text PDFConstitutive cell-autonomous immunity in metazoans predates interferon-inducible immunity and comprises primordial innate defense. Phagocytes mobilize interferon-inducible responses upon engagement of well-characterized signaling pathways by pathogen-associated molecular patterns (PAMPs). The signals controlling deployment of constitutive cell-autonomous responses during infection have remained elusive.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) involves interaction between host genetic factors and environmental triggers. CCDC88B maps within one IBD risk locus on human chromosome 11q13. Here we show that CCDC88B protein increases in the colon during intestinal injury, concomitant with an influx of CCDC88Blymphoid and myeloid cells.
View Article and Find Full Text PDFBackground: Although inflammatory bowel disease (IBD) is a failure in maintaining tolerance to the intestinal microbiota, few studies have investigated the use of immunologic tolerance as a treatment approach for IBD. We hypothesized that induction of immune tolerance at a distal site could suppress intestinal inflammation through a process of bystander regulation.
Methods: Epicutaneous tolerance was induced by topical application of ovalbumin (OVA) using a Viaskin patch for 48 hours.
Dendritic cells (DCs) play a pivotal role in the development of effective immune defense while avoiding detrimental inflammation and autoimmunity by regulating the balance of adaptive immunity and immune tolerance. However, the mechanisms that govern the effector and regulatory functions of DCs are incompletely understood. Here, we show that DC-derived nitric oxide (NO) controls the balance of effector and regulatory DC differentiation.
View Article and Find Full Text PDFNecroptosis is a programmed form of non-apoptotic cell death that requires the kinase activity of the receptor interacting protein kinase 3 (RIPK3). Although in vitro data suggests that cancer cells lacking expression of RIPK3 are invasive, the physiological role of RIPK3 in a disease-relevant setting remains unknown. Here we provide evidence that RIPK3 has a critical role in suppressing colorectal cancer (CRC).
View Article and Find Full Text PDFCytosolic NOD-like receptors (NLRs) have been associated with human diseases including infections, cancer, and autoimmune and inflammatory disorders. These innate immune pattern recognition molecules are essential for controlling inflammatory mechanisms through induction of cytokines, chemokines, and anti-microbial genes. Upon activation, some NLRs form multi-protein complexes called inflammasomes, while others orchestrate caspase-independent nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) signaling.
View Article and Find Full Text PDFThe intestinal epithelium constitutes a dynamic physical barrier segregating the luminal content from the underlying mucosal tissue. Following injury, the epithelial integrity is restored by rapid migration of intestinal epithelial cells (IECs) across the denuded area in a process known as wound healing. Hence, through a sequence of events involving restitution, proliferation and differentiation of IECs the gap is resealed and homeostasis reestablished.
View Article and Find Full Text PDFThe Ccs3 locus on mouse chromosome 3 regulates differential susceptibility of A/J (A, susceptible) and C57BL/6J (B6, resistant) mouse strains to chemically-induced colorectal cancer (CRC). Here, we report the high-resolution positional mapping of the gene underlying the Ccs3 effect. Using phenotype/genotype correlation in a series of 33 AcB/BcA recombinant congenic mouse strains, as well as in groups of backcross populations bearing unique recombinant chromosomes for the interval, and in subcongenic strains, we have delineated the maximum size of the Ccs3 physical interval to a ∼2.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs), including defensins and cathelicidins, constitute an arsenal of innate regulators of paramount importance in the gut. The intestinal epithelium is exposed to myriad of enteric pathogens and these endogenous peptides are essential to fend off microbes and protect against infections. It is becoming increasingly evident that AMPs shape the composition of the commensal microbiota and help maintain intestinal homeostasis.
View Article and Find Full Text PDFImmunol Res
December 2012
Nucleotide-binding and oligomerization domain-like receptors (NLRs) are central regulators of pathogen recognition, the induction of innate immune effectors and inflammation with utmost importance in human diseases such as inflammatory bowel diseases. Most NLRs are key mediators of inflammasome complexes that activate caspase-1 and drive proteolytic processing of pro-inflammatory cytokines; however, a few tightly regulate inflammasome-independent activation of nuclear factor-κB and mitogen-activated protein kinase pathways. NLR signaling has evolved in intestinal epithelial cells to avoid overactive inflammatory responses toward the resident microbiota and to preserve epithelial barrier integrity and functions by maintaining homeostasis.
View Article and Find Full Text PDFInnate immunity is a fundamental defence response that depends on evolutionarily conserved pattern recognition receptors for sensing infections or danger signals. Nucleotide-binding and oligomerization domain (NOD) proteins are cytosolic pattern-recognition receptors of paramount importance in the intestine, and their dysregulation is associated with inflammatory bowel disease. They sense peptidoglycans from commensal microorganisms and pathogens and coordinate signalling events that culminate in the induction of inflammation and anti-microbial responses.
View Article and Find Full Text PDFPathogen sensing by the inflammasome activates inflammatory caspases that mediate inflammation and cell death. Caspase-12 antagonizes the inflammasome and NF-κB and is associated with susceptibility to bacterial sepsis. A single-nucleotide polymorphism (T(125)C) in human Casp12 restricts its expression to Africa, Southeast Asia, and South America.
View Article and Find Full Text PDFInflammatory caspases are essential effectors of inflammation and cell death. Here, we investigated their roles in colitis and colorectal cancer and report a bimodal regulation of intestinal homeostasis, inflammation and tumorigenesis by caspases-1 and -12. Casp1(-/-) mice exhibited defects in mucosal tissue repair and succumbed rapidly after dextran sulfate sodium administration.
View Article and Find Full Text PDFInflammatory caspases are important effectors of innate immunity. Caspase-12, of the inflammatory caspase subfamily, is expressed in all mammals tested to date, but has acquired deleterious mutation in humans. A single-nucleotide polymorphism introduces a premature stop codon in caspase-12 in the majority of the population.
View Article and Find Full Text PDFTwo of the main challenges that multicellular organisms faced during evolution were to cope with invading microorganisms and eliminate and replace dying cells. Our innate immune system evolved to handle both tasks. Key aspects of innate immunity are the detection of invaders or tissue injury and the activation of inflammation that alarms the system through the action of cytokine and chemokine cascades.
View Article and Find Full Text PDFCell death and innate immunity are ancient evolutionary conserved processes that utilize a dazzling number of related molecular effectors and parallel signal transduction mechanisms. The investigation of the molecular mechanisms linking the sensing of a danger signal (pathogens or tissue damage) to the induction of an inflammatory response has witnessed a renaissance in the last few years. This was initiated by the identification of pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) and more recently cytosolic Nod-like receptors (NLRs), that brought innate immunity to center stage and opened the field to the study of signal transduction pathways, adaptors and central effectors linked to PRRs.
View Article and Find Full Text PDFBacterial sensing by intracellular Nod proteins and other Nod-like receptors (NLRs) activates signaling pathways that mediate inflammation and pathogen clearance. Nod1 and Nod2 associate with the kinase Rip2 to stimulate NF-kappaB signaling. Other cytosolic NLRs assemble caspase-1-activating multiprotein complexes termed inflammasomes.
View Article and Find Full Text PDFCaspase-1 is an essential effector of inflammation, pyroptosis, and septic shock. Few caspase-1 substrates have been identified to date, and these substrates do not account for its wide range of actions. To understand the function of caspase-1, we initiated the systematic identification of its cellular substrates.
View Article and Find Full Text PDFLarge scale comparative evaluation of protein expression requires miniaturized techniques to provide sensitive and accurate measurements of the abundance of molecules present as individual and/or assembled protein complexes in cells. The principle of competition between target molecules for binding to arrayed antibodies has recently been proposed to assess differential expression of numerous proteins with one-color or two-color fluorescence detection methods. To establish the limiting factors and to validate the use of alternative detection for protein profiling, we performed competitive binding assays under different conditions.
View Article and Find Full Text PDF